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a b s t r a c t

Several wind energy facilities are currently being planned for
offshore Atlantic waters of the United States. However, relatively
little is known about the distribution, abundance and spatio-
temporal variability of marine birds in their offshore habitats and
it is becoming increasingly necessary to accurately characterize
these demographic parameters before assessing the influence of
factors such as offshore energy development on populations. Thus,
we incorporate a multi-scale approach to develop models for
the space-time distribution and abundance of marine birds to
identify potential high-use areas in need of further study.With data
taken from past and ongoing survey efforts, we provide relative
abundance and density estimates for marine birds over a wide
geographical area during multiple years. Due to the excessive
amount of zeros as well as extremely large counts exhibited in the
data, a double-hurdle model is formulated that includes a negative
binomial and a generalized Pareto distribution mixture. Spatial
heterogeneity ismodeled using a conditional auto-regressive (CAR)
prior, and a Fourier basis was used for seasonal variation. We
demonstrate our model by creating probability maps that show
areas of high-abundance and aggregation for twenty-four species
of marine bird.
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1. Introduction

One of the fastest-growing segments of the energy market is wind power (American Council On
Renewable Energy, 2014), particularly wind resources in offshore waters (American Wind Energy
Association, 2013). The potential impacts of offshorewind facilities onmarine bird species are notwell
understood, andmay include exposing birds to increasedmortality through turbine collisions, altering
their behavior and flight pathways (Drewitt and Langston, 2006), and altering the habitat uponwhich
marine birds depend for foraging. One of the first steps in evaluating potential interactions fromwind
energy facilities is to understand the distribution and abundance of marine birds (Huettman and
Diamond, 2001). This information can be used in identifying sensitive and high-use areas of birds and
is thus a key component of marine planning (Huettman and Diamond, 2001; Winiarski et al., 2014).

In marine bird research and ecology more generally, count data are often analyzed using Poisson,
quasi-Poisson, or negative binomial (NB) distributions, or zero-inflated versions of these models (Ver
Hoef and Boveng, 2007; Oppel et al., 2012). Given the level of over-dispersion that can occur in
marine bird data, these distributions may not be robust enough for the data, but recent work has
shown that other, less commonly used distributions, may be useful in capturing the high variance
to mean ratio. Beauchamp (2011) found the power law distribution outperformed NB for modeling
group sizes in seven marine bird species in the Western North Atlantic. Zipkin et al. (2014) compare
and contrast a suite of distributions for sea duck data in the Western North Atlantic, finding that
the discretized lognormal was the best fit over the geometric, logarithmic, zeta, Poisson, NB, and
Yule–Simon distributions for modeling flock sizes. Other methods for trying to account for the large
variation in marine bird data is using a Box–Cox hurdle model (Menza et al., 2012), which transforms
count data to be more normally distributed. The main goal of these studies was to model the over-
dispersion and zero-inflation of marine bird data without throwing data out, truncating, or mis-
specifying the distribution, to better understand the main ecological drivers or spatial patterns of
marine bird distributions.

Our objectives are to build on this foundation and further examine the extreme counts that arise in
marine bird data (e.g., large aggregations, where counts can be 500–2000 birds at one location) and to
explicitly account for spatial autocorrelation in marine bird data. By doing so, we aim to create more
accurate predictions of sea bird distributions across a large spatial domain.

This paper is organized as follows: Section 2 gives details on how the datawere collected, andwhat
covariateswere considered in the study. Section 3 describes the spatio-temporal double-hurdlemodel
and our hierarchical Bayesian approach to parameter estimation. Model performance is evaluated for
24 different species in the western North Atlantic, and exposure maps are created in Section 4. We
conclude with a discussion in Section 5.

2. Marine bird data

Between 1992 and 2010, a total of 43,701 boat and aerial transectsmade up an avian data collection
effort that spanned the Atlantic coastline from Maine to Florida. We consider only strip sampling
surveys, where observers record all observationswithin a fixed distance from a transect line (Williams
et al., 2002). In the historical database, this amounted to over 2 million individual marine birds
representing nearly 200 species in 133,890 separate sightings. For each sighting, the count, species,
date and location were recorded (other information were also recorded, but not consistently across
surveys).

We created approximate 4 × 4 km contiguous grid cells over the Atlantic coast region to
match the resolution of biophysical covariate information obtained from the National Oceanographic
and Atmospheric Administration (NOAA). These covariates, i.e., sea surface temperature (SST),
chlorophyll-a concentration (CHL), and ocean depth (DEP), were used as a proxy for the variability
in food resources that may influence where we expect birds to occur (Zipkin et al., 2010). Because
the data are very sparse, observations which occurred in the same month and year were combined
to give monthly counts for each grid cell. We analyze data from July 2002 to November 2010 (101
months), on 15,984 grid cells which satisfy the following constraints: north of 35.25° latitude, east of
−76.5° longitude, and with an ocean depth of no deeper than 500m. In defining this study region, we
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