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Abstract

This paper presents a novel stress field and tangent material moduli integration procedure over a cross-section of a
biaxially loaded concrete beam. The procedure assumes a sufficiently simple analytical form of the constitutive law of
concrete, the polygonal shape of the boundary of the simply- or multi-connected cross-section and the monotonically
increasing loading. The area integrals are transformed into the boundary integrals and then integrated analytically. The
computational efficiency of the procedure is analyzed by comparing it with respect to the number of floating-point oper-
ations needed in various numerical integration-based methods. It is found that the procedure is not only exact, but also
computationally effective.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The non-linear finite-element analysis of reinforced
concrete spatial beams and frame structures requires
the integration of stresses and tangent material moduli
over the cross-section. Since the governing equations
of these structures are non-linear and must therefore
be solved iteratively, the integrals over the cross-sections
need to be evaluated many times. Thus, it is of great
importance for us to be able to evaluate cross-sectional
integrals as efficiently as possible. Since the area of the
reinforcing steel bars is relatively small compared to
the area of concrete, we may assume a constant stress

field across each steel bar, which makes the integration
over the steel bars very simple. The difficult part of the
reinforced concrete section analysis is thus the integra-
tion of the stress field and the tangent material moduli
of concrete.

A number of numerical methods have been proposed
in order to make the integrations more efficient, see, e.g.
[2,8,10]. The methods presented by Bonet et al. and
Fafitis are particularly convenient when the stress field
varies only in one direction. Their methods use Green�s
Theorem and transform the area integral into the
boundary integral, which is then integrated numerically.
While such an approach is more efficient than the one
using directly the area integrals, it is still not computa-
tionally optimal due to the fact that the numerical inte-
gration inherently introduces errors. Moreover, the
error in the cross-sectional integrals might imply a sub-
stantial error in force–deflection curves near the ultimate
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load [12]. The error can, clearly, be made smaller by
increasing the number of integration points, yet this
increases the computational time and, consequently,
reduces the time–efficiency of the overall finite-element
algorithm. To make the integration procedure both
time-efficient and exact, we have developed an analytical
integration scheme as described in the sequel.

For the deduction of an analytical integration algo-
rithm, the constitutive law of concrete needs to be pre-
scribed in an analytical form. We have chosen the
constitutive law proposed by Desayi and Krishnan [4]
for the concrete in compression, and that of Bergan
and Holand [1] for the concrete in tension. The next
assumption concerns the strain distribution over the
cross-section. We follow the standard approach in rein-
forced concrete beam analysis and assume the linear
strain distribution (see, e.g. [3,7,9,11]). For the linear
strain distribution, it is easy to find a constant strain
and stress direction. With the help of some change of
integration variables and by the use of Green�s Theorem,
we transform area integrals into the path integrals along
the boundary of the cross-section of known, analytically
integrable functions. If the cross-section, possibly hol-
low, can be approximated by a polygon (which is often
the case in practice), an efficient formula for the analyt-
ical integration follows. We assume a monotonic in-
crease in strains with the increase of a load, and thus
disregard strain-reversals at any point of the cross-sec-
tion. This assumption limits the applicability of the pres-
ent procedure to the analyses of the ultimate limit
capacity and the serviceability state of a frame structure.

The exactness of an analytical approach is obvious,
while its computational efficiency might be doubtful if
the final analytical expressions become very cumbersome.
We demonstrate the efficiency of the present method via
three numerical examples, in which we compare the accu-
racy and the required number of floating-point opera-
tions with several numerical integration-based methods.

2. Constitutive law of concrete

Following Desayi and Krishnan [4] and Bergan and
Holand [1], the uniaxial stress–strain relation for con-
crete is given by a function, which is smooth almost
everywhere, except at a finite number of discrete points
(Fig. 1):
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Here fm is strength of concrete in compression
(fm = jrminj > 0); e1 < 0 is strain at fm; eu < 0 is ultimate

strain in compression; er > 0 is strain at tension strength
of concrete, rr ¼ 2fmje1j er
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; and em > 0 is ultimate

strain in tension. Parameters fm, e1, and eu are deter-
mined in the compression tests on concrete cylinders;
er and em must be determined in tension tests which
are for concrete only rarely performed. The empirically
proved and commonly used values er = 5.5 · 10�5 and
em = 7 · 10�4 are rather good approximative values [1].

3. Analytical cross-sectional integration

3.1. Strain distribution over the cross-section

In spatial beam elements we usually assume the Ber-
noulli hypothesis that a cross-section suffers only rigid
rotation during deformation. This implies that the nor-
mal strain (axial strain) is linearly distributed over the
cross-section:

e y; zð Þ ¼ c1 þ yj3 þ zj2. ð2Þ

Here, e is the normal (axial) strain at fibre (y,z) (see
Fig. 2 for the definition of the cross-section and coordi-
nate axes y, z), c1 is the normal strain, and j2 and j3 are
the rotational strains (curvatures) about y and z axes,

Fig. 1. Constitutive law of concrete.

Fig. 2. Model of the cross-section and local coordinate systems.
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