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A growing field of research aims to characterise the contribution of anthropogenic emissions to the
likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the
tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic
signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare
the chance of daily land-surface precipitation and near-surface temperature extremes generated by three
Atmospheric Global Climate Models typically used for event attribution, with distributions from six re-
analysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional
sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and
cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution
estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic
location. Although the three models show similar results over many regions, they do disagree over
others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the
importance of using multiple reanalysis and/or observation products, as well as multiple models in event
attribution studies.

Crown Copyright © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As the climate continues to change under the influence of an-
thropogenic emissions, there has been a growing interest in how
the occurrence of extreme weather events fit within the climate
change context (Seneviratne et al.,, 2012). A common method of
characterising the anthropogenic contribution to extreme weather
is to analyse the relative probabilities of exceeding an extreme
threshold in two simulated distributions (Stone and Allen, 2005;
Stott et al.,, 2004, 2013). These distributions can be constructed
from two large ensembles of simulations generated by a dynamical
climate model, each run under a different climate scenario: a
historical ‘real world’ (RW) representative of recent observed cli-
mate, and a counter-factual ‘natural world’ (NAT) representative of
a climate without human interference in the climate system.
Purpose-built model evaluation should underpin the probabilistic
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event attribution framework used in these studies, whereby the
probabilities of extremes are compared across the historical model
output and a number of observation and/or reanalysis products.
This is necessary as attribution statements are highly sensitive to
the shapes of the tails from which they are calculated (Angélil
et al., 2014b; Fischer and Knutti, 2015; Jeon et al., 2016). For ex-
ample, the use of simulated RW and NAT distributions with
shorter tails than those of observed distributions lead to ex-
aggerated attribution statements — the shorter tails increase the
relative strength of the anthropogenic signal from the noise of
natural variability (Bellprat and Doblas-Reyes, 2016). In such an
evaluation the use of multiple observation and/or reanalysis pro-
ducts must be considered, as their representation of extremes can
differ remarkably (Donat et al., 2014).

Many event attribution studies however typically fail to in-
corporate multiple observation and/or reanalysis products to
evaluate the extreme tails of simulated distributions (Stott et al.,
2004; Pall et al.,, 2011; Peterson et al., 2012, 2013; Herring et al.,
2014, 2015). One possible reason for the paucity of such evaluation
is the lack of long (~50 years) historical simulations, and long
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spatially and temporally complete observational records required
for the evaluation of extremes. For example, evaluating one-in-
ten-year extremes with datasets ten years in length is both chal-
lenging and unreliable.

Using datasets 35 years in length (1979-2013), we evaluate the
likelihood of exceeding (or falling below for cold events) one-in-
one- and one-in-ten-year daily temperature and precipitation
thresholds (defined according to a reference product) over land
regions of the world, in ensembles of historical simulations gen-
erated by three Atmospheric Global Climate Models (AGCMs). The
primary aim of this study is to explore observational uncertainties
in model evaluation relevant for extreme event attribution, at the
regional scale.

2. Data
2.1. Atmospheric Global Climate Model data

Output was generated by three AGCMs as part of the C20C+
Detection and Attribution Project (see http://portal.nersc.gov/c20c
for more information, Folland et al. 2014). Since Pall et al. (2011)
numerous event attribution studies have been published utilising
output from AGCMs in order to produce the large ensembles
needed to accurately resolve the statistics of rare weather events.
Here we use CAM5.1, MIROC5 and HadGEM3-A-N216 (‘HadGEM3’
hereinafter), the first three AGCMs to have a sufficient number of
simulations submitted to the C20C+ archive. As there are 10 en-
semble members generated by MIROC5 (run at ~1.4°) which span
a number of decades, we use the first 10 historical ensemble
members from CAMS5.1 and HadGEM3, run at ~1° and ~0.5° re-
solution respectively. The members in each ensemble differ from
each other only in their initial conditions. Simulations from all
AGCMs are roughly 50 years in length but have been trimmed to
match availability of the AGCM and reanalyses products used.

The AGCMs are forced under observed boundary conditions.
These boundary conditions include greenhouse gases, tropo-
spheric aerosols, volcanic aerosols, ozone concentrations, solar
luminosity, sea surface temperature (SST), sea ice coverage (SIC),
and land cover. In CAM5.1, prescribed SSTs up to 1982 are an ad-
justed version of the HadISST1 dataset (Rayner et al., 2003), after
which the NOAA-OLv2 dataset is used (Hurrell et al., 2008). The
HadGEM3 (Christidis et al., 2013) and MIROC5 (Shiogama et al.,
2013, 2014) prescribed monthly SST and SIC were taken from the
HadISST1 dataset.

2.2. Reanalyses

We compare the probabilities of daily extremes in the three
AGCMs with four reanalysis products (results using two additional
reanalyses products can be found in the Supplementary Material).
We firstly examine the ECMWEF Interim Reanalysis (ERA-Interim,
Dee et al. (2011)) as it has been found that temperature extremes
in ERA-Interim correlate more strongly with gridded observations
than a selection of other reanalysis products (Donat et al., 2014).
Because there is some uncertainty in the representation of ex-
treme weather between observations and reanalyses products
(Donat et al., 2014), we complement ERA-Interim with three ad-
ditional products from the current state-of-the-art generation
(Rienecker et al., 2011). These are: NCEP Climate Forecast System
Reanalysis (CFSR, Saha et al., (2010)); National Aeronautics and
Space Administration (NASA)'s Modern-Era Retrospective Analysis
for Research and Applications (MERRA, Rienecker et al., (2011));
and most recently available, the Japanese 55-year Reanalysis (JRA-
55, Kobayashi et al. (2015)).

As they are still widely used products, results using the

National Centers for Environmental Prediction/National Centre for
Atmospheric Research (NCEP/NCAR) Reanalysis 1 (NCEP1, Kalnay
et al., (1996)) and NCEP Department of Energy (DOE) Reanalysis 2
(NCEP2, Kanamitsu and Ebisuzaki, (2002)) are included in the
Supplementary Material. Despite NCEP1 being shown to perform
poorly relative to other reanalyses and observation products for
temperature extremes (Donat et al., 2014), it has been widely used
in recent event attribution studies (Herring et al., 2014, 2015).

HadGHCND (Caesar et al., 2006) - the only quasi-global long-
running in situ-based observation product consisting of daily
temperature fields, was excluded from this study not only because
it is spatially and temporally incomplete, but also as it is developed
at coarse resolution (3.75° x 2.5°) relative to other products in this
study. As all data in this study are remapped to the resolution of
the coarsest product, we have opted for high resolution analysis
over using HadGHCND. All AGCM and reanalysis data have been
interpolated to the NCEP1/NCEP2 grid (192 x 94 grid; 1.9°), using a
first-order conservative remapping technique (Jones, 1999).

Since reanalyses are different from observations as they are
essentially an assimilation of observations through an atmospheric
model, we use gridded observations of daily temperature and
precipitation over Australia, from the Australian Water Availability
Project (AWAP, Jones et al., (2009)). Observations over only Aus-
tralia are used because existing gridded observations of daily
temperature and precipitation are spatially incomplete. Hot, cold,
and wet extremes over three Australian regions are compared
between AWAP and ERA-Interim (see Fig. S7).

It should be noted however, that caution should be taken when
comparing gridded observations with models due to the “issue of
scale” (Avila et al., 2015), which leads to a mismatch between the
two types of products. Gridded observations represent regularly
spaced values derived from point locations, while output from
models represent area averages. There is an additional issue at
play in gridded observations such as HadEX2 and GHCNDEX: the
order of operations applied to calculate extremes differ from
products that provide daily grids of temperature and precipitation,
such as climate models and reanalyses. Extremes are first calcu-
lated at point locations and then gridded, while in models, ex-
tremes are calculated from the gridbox average. This creates a
systematic bias where the difference in hot and cold extremes in
models are smaller than those found in GHCNDEX and HadEX2.

3. Method

For the evaluation of extremes, thresholds of one-in-one-year
(% chance of occurrence) and one-in-ten-year (ﬁ chance of
occurrence) hot, cold, and wet days occurring at the grid and re-
gional scales have been defined from daily anomalies in ERA-In-
terim, with the base period being the 1979-2013 climatology at
each grid cell or region. ERA-Interim serves as our reference pro-
duct in order to clearly demonstrate differences amongst all
AGCMs and reanalyses products. Although perhaps less relevant
for extreme event attribution, the selection of the one-in-one-year
thresholds allows us to examine extreme anomalies for which
sampling should not be problematic considering the length of the
period examined. When the desired percentile was between two
data points, the nearest point to a linearly interpolated value be-
tween the two points was chosen.

The regions used are demarcated by the 58 regions (see Fig. 1
and Angélil et al., (2014b)) in the Weather Risk Attribution Fore-
cast (WRAF, http://web.csag.uct.ac.za/ ~daithi/forecast/). Each re-
gion, roughly 2-10° km?, is based on political-economic borders,
and omits regions dominated by small islands (for which the
statistical characteristics of extreme atmospheric weather will be
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