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A localized radial-basis function (RBF) Meshless algorithm, with a direct velocity-pressure coupling
scheme, is presented for fluid flow simulations. The proposed method is a combination of several effi-
cient techniques found in different Computational Fluid Dynamic (CFD) procedures and has very low
numerical diffusion. The fundamental idea of this method lays on several important inconsistencies
found in three of the most popular techniques used in CFD, segregated procedures, streamline-vorticity
formulation for 2D viscous flows, and the fractional-step method, very popular in Direct Numerical Si-
mulation (DNS) and Large-Eddy Simulation (LES). The proposed scheme uses the classical segregated
point distribution for all primitive variables, and performs all necessary interpolations with the accurate
RBF technique. The viscous term is estimated using standard second order finite differences, while the
convection term is discretized using the low-diffusion flux limiters. The velocity-pressure coupling is
performed with the flow equations in their original form, and using a direct velocity-pressure coupling
scheme. This way of solving the flow equations has no approximations in the boundary conditions. The
method is validated with the 2D lid-driven cavity problem and very good agreement is found with

classical data.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the first successful velocity-pressure coupling procedure
presented by Harlow and Welch [1], and the later development of
the Projection Method, the science of Computational Fluid Dy-
namics (CFD) has become a fundamental tool for engineering
calculations and design. In the early 1980's [2], the Finite-Volume
Method (FVM) was introduced and became very popular since the
formulation uses very simple mathematical tools, so the method
became widely accessible. At the beginning, most calculations
were performed in geometries where the flow was parabolic, and
the results agreed very well with experimental data. When the
same procedure was used to solve elliptic flow problems, some
differences appeared with experimental data, but there were no
major errors between simulations performed with different nu-
merical methods. In the 1980's, the Finite Element Method (FEM),
very popular in structural analysis, was extended to fluid flow
computations, and the calculation in irregular geometries became
possible with the use of a coordinate transformation of the
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geometry, keeping the velocity vector in the original Cartesian
form. With this procedure, the flow equations were solved in their
original form but the cost of the solution of the corresponding
linear system was excessive. In spite of the use of a cheaper al-
ternative called the frontal method [3], the FEM procedure was not
very popular to solve fluid flow problems. In the 1990's, the FVM
method was extended to general curvilinear coordinate systems,
or for short, body-fitted. When the segregated velocity-pressure
coupling approach was used in irregular geometries, keeping the
velocity vector in the Cartesian form, there were many cases in
which convergence was impossible. The only solution was to
perform a full transformation of the coordinates and velocity
vector. This methodology is the most frequent approach in the
solution of today's engineering problems (i.e. [4]). Of course, some
researchers developed hybrid procedures, as for example, the
combination of FVM and FEM.

Unfortunately, the approach of transforming any fluid flow
problem into a general curvilinear system (orthogonal or non-or-
thogonal) imposes some additional numerical diffusion since all
metric coefficients are computed using the standard finite differ-
encing scheme. These errors make the Direct Numerical Simula-
tions (DNS) and Large-Eddy Simulations (LES) simulations im-
practical in complex geometries. Basically, almost all DNS and LES
simulations are done in Cartesian coordinates, limiting the scope
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of problems to be solved. In order to avoid the transformation of
the domain and/or velocity vector into a curvilinear system, a new
technique called Meshless was developed by many authors starting
in the early 1990's. The works of Batina [5], Kansa [6,7] and Be-
lytschko [8,9] were fundamental in the development of the
Meshless technique. Today, the main idea of any Meshless proce-
dure is to solve the flow equations in Cartesian coordinates and
employ high order interpolations for irregular geometries.

The common issue with all these popular techniques is that the
velocity-pressure coupling is done following the same projection
method. With some minor modifications, the original flow equa-
tions are transformed into a series of consecutive and explicit
equations for velocity, pressure and mass correction, this last one
needing to satisfy the mass balance. The transformation of the
flow equations into an equivalent system of Poisson or Poisson-
like equations is an incredibly simple solution for the problem of
how to link pressure to velocity without an explicit equation for
pressure. This idea became the core of the development of basi-
cally all commercial CFD software industry today.

However, the Boundary Element Method (BEM) together with
the stream function-vorticity formulation is able to overcome the
difficulties of the classical segregated procedure with primitive
variables, obtaining good results [10-14].

The normal approach in CFD, for DNS and LES simulations, has
been to extend the current CFD procedures and perform some
minor changes intended to reduce the so-called numerical diffusion
error. In almost all procedures that transform the original flow
equations into a system of segregated equations, the simplification
of the boundary conditions has been fundamental to solve any
fluid flow problem. The simplification, or simply speaking, the set
of boundary conditions of the transformed fluid flow equations,
has always produced considerable controversy. For example, the
Poisson equation for pressure with the boundary conditions ob-
tained from the Navier-Stokes equations, make the convergence of
any segregated procedure too slow for high demanding problems.
In the particular case of the wall, one practical solution is to set the
normal derivative of pressure to zero. For parabolic problems, the
above simplification is correct, and the convergence is fast. In the
case of general elliptic problems, even with a grid that is fine
enough so that the first nodes are inside the boundary layer, it has
not yet been proven that this consideration is absolutely correct.

In spite of the improvement in all CFD techniques, even today
the solution of complex elliptic problems, such as the 2D/3D
backward-facing step or lid-driven cavity, is still a mayor chal-
lenge. These two cases have produced by far the largest amount of
differences in numerical results between procedures. Many au-
thors have explained this effect as bifurcation of the solution.

The objective of this work is to present a hybrid approach, by
combining the direct velocity-pressure formulation presented in
[15] and a high order interpolation technique.

In more detail, the idea of this work is to present an alternative
approach, the use of a localized RBF Meshless procedure to solve
the flow equations in the original form, so that there is no sim-
plification or approximation of any boundary condition, and sol-
ving the corresponding linear system using any standard matrix
procedure. Additionally, the proposed numerical procedure tries to
minimize the generation of additional numerical diffusion, a very
popular approach to improve stability of the numerical scheme.
The velocity-pressure coupling procedure is the same one devel-
oped in [15]. The staggered point distribution approach (or grid) is
selected and the RBF scheme is chosen to perform any necessary
interpolation. Finally, in order to keep the numerical diffusion at a
very low level, the well known flux-limiting scheme will be used
in the discretization of the convection terms.

It is convenient to underline that meshless means volume-less
or element-less. Essentially, the equations are not integrated in

any control-volume or element. In a meshless approach, the idea is
to scatter points in space and then use a generalized form finite-
differencing in Cartesian coordinates to compute the derivatives.

2. Velocity-pressure coupling

The main objective of any CFD procedure in the solution of
incompressible flow problems is to compute velocity and pressure
from momentum and continuity equations.
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This set of equations is quite simple, but unfortunately, there is
no explicit equation for pressure and the implementation becomes
difficult for non expert programmers. The development of a robust
procedure able to compute velocity and pressure from those in-
compressible flow equations, is called velocity-pressure coupling
problem.

The most popular approach, the projection method, also called
the segregated approach, solves the flow equations by a series of
Poisson-like equations. The SIMPLE method developed by Pa-
tankar [2] and its variants have been implemented in most com-
mercial packages.

However, the mass correction equation, key step in the segre-
gated coupling scheme, works correctly for parabolic flows, with
important errors for elliptic flows if the grid is not fine enough.
Additionally, the pressure equation may lead to incorrect values if
the grid is too stretched in one particular direction. More details
about these issues and the analysis on some particular methods
can be found in [16].

2.1. The fully coupled procedure

The most straightforward way to solve the equations of motion
is by solving the discrete linear system, momentum and con-
tinuity, with a sparse direct matrix solver. The fact that there is no
pressure term in the continuity equation makes the condition
number of that full system extremely large. Additionally, the
amount of resources needed to solve a sparse linear system of
several millions of equations is prohibitive in 3D simulations. One
way to reduce the enormous computational resources needed for
this problem is by dividing the entire region in small blocks or
sub-domains.

In a given block, the linear system of equations to be solved can
be written as, in 2D (where p is a vector containing the pressure in
all grid points):

AU +Bp =b¥%, AV +Cp =b", DU +EV =0 @)

If boundary conditions are excluded a pressure equation can be
obtained by simple matrix manipulation:

(DA-'B + EAC)p’ = DA-'b" + EA-1bY 3)

The resulting matrix is diagonally-dominant and has non-zero
diagonal coefficients and consequently, a low condition number.

2.2. A local coupling procedure

A useful alternative that solves the problems associated with
both segregated and direct full coupling procedures is presented in
[15]. In general, this scheme uses the segregated grid arrangement
in the same way as the finite volume method. The fundamental
aspect of this coupling approach is that the velocity-pressure
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