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a b s t r a c t

Electromagnetic problems governed by Maxwell's equations are solved by using a Clifford algebra valued
boundary element method (BEM). The well-known Maxwell's equations consist of eight pieces of scalar
partial differential equations of the first order. They can be rewritten in terms of the language of Clifford
analysis as a nonhomogeneous k-Dirac equation with a Clifford algebra valued function. It includes three-
component electric fields and three-component magnetic fields. Furthermore, we derive Clifford algebra
valued boundary integral equations (BIEs) with Cauchy-type kernels and then develop a Clifford algebra
valued BEM to solve electromagnetic scattering problems. To deal with the problem of the Cauchy principal
value, we use a simple Clifford algebra valued k-monogenic function to exactly evaluate the Cauchy
principal value. Free of calculating the solid angle for the boundary point is gained. The remaining
boundary integral is easily calculated by using a numerical quadrature except the part of Cauchy principal
value. This idea can also preserve the flexibility of numerical method, hence it is suitable for any geometry
shape. In the numerical implementation, we introduce an oriented surface element instead of the unit
outward normal vector and the ordinary surface element. In addition, we adopt the Dirac matrices to
express the bases of Clifford algebra ( )Cl3 . We also use an orthogonal matrix to transform global boundary
densities into local boundary densities for satisfying boundary condition straightforward. Finally, two
electromagnetic scattering problems with a perfect spherical conductor and a prolate spheroidal conductor
are both considered to examine the validity of the Clifford algebra valued BEM with Cauchy-type kernels.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Complex algebra and complex analysis are powerful tools for
solving problems in two-dimensional spaces. This point motivates
scholars to develop methods based on complex algebra/analysis to
deal with problems in three-dimensional spaces. However, due to
the algebraic structures of complex numbers and the calculus of
complex variables, complex algebra/analysis are improper to be the
foundation to naturally develop any numerical method for solving
problems in three-dimensional spaces. To preserve some benefits of
complex algebra or complex analysis for solving three-dimensional
problems, an extension of complex algebra is required.

In 1843, Hamilton [1] proposed quaternion algebra which is an
extension of complex algebra in three-dimensional space. There-
fore, complex algebra can be seen as a subalgebra of quaternion

algebra. Although the multiplication of two quaternion numbers is
non-commutative, quaternion algebra can be applied to describe
three-dimensional problems. For quaternionic analysis, Fueter and
his collaborators started developing it since 1930 [2–5].

On the other hand, Clifford [6] proposed the algebras named
after him in 1878. Clifford algebra can be seen as an extension of
complex or quaternionic algebras. Bases of Clifford algebra are
generated according to the Clifford product rule. In this way,
Clifford algebra is different from other algebraic systems that it has
no more and no fewer bases to describe the geometric relations of
space [7,8] and easier to extend it to higher dimensional problems.
As quoted by Hestenes:「Geometry without algebra is dumb! - Al-
gebra without geometry is blind!」 [8]. A linear combination of
those bases is called Clifford number or multivector. Later, Hes-
tenes [7,9] considered that Clifford algebra can be a common
language in physics and mathematics. Clifford algebra has been
applied to many fields such as, geometry, dynamics, physics,
electromagnetics and information theory [10,11].

As well as the complex analysis in the complex variables and
quaternionic analysis [12–14] in the quaternion algebra, there is a
new field, Clifford analysis or so-called hypercomplex analysis [15–
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20] in Clifford algebra. Liu and Hong used Clifford analysis to derive
general solutions of both isotropic elasticity [21] and anisotropic
elasticity [22,23]. One goal of this paper is to develop the Clifford
algebra valued BIE with the Cauchy-type kernel to deal with three-
dimensional problems. Regarding Clifford algebra valued BIE [24],
Hong and Liu derived it [25,26] and employed it to solve three-di-
mensional magnetostatic problems [27] and three-dimensional
elasticity [28]. However, they merely focused on static problems.

Now, we extend Clifford algebra valued BIE to solve three-di-
mensional time-harmonic problems. For time-harmonic problems,
such as Helmholtz equations, Gerus and Shapiro [29] derived a
Cauchy-type integral corresponding to the two-dimensional
Helmholtz equation by using quaternion algebra. Later, Vu Thi
Ngoc Ha and Begehr [30] extended to the three-dimensional
Helmholtz equation. Both works focused on deriving the Cauchy-
type integral, however no numerical results were provided.
Chantaveerod and his coworkers [31–33] employed the four-di-
mensional Clifford algebra to describe Maxwell's equations as a k-
Dirac equation. They called it Maxwell-Dirac Equation. They also
employed the corresponding Clifford algebra valued BIE to calcu-
late both interior and exterior problems with a plane wave and a
Hertzian dipole, respectively.

In this paper, we employ the three-dimensional Clifford algebra
( )Cl3 and Clifford analysis to reformulate Maxwell's equations to a k-

Dirac equation. We believe that algebraic space of the three-dimen-
sional Clifford algebra is sufficient to describe Maxwell's equations.
Furthermore, we derive Clifford algebra valued BIEs for the k-Dirac
equation and develop its Clifford algebra valued BEM. To examine the
validity of Clifford algebra valued BEM with the Cauchy-type kernel,
two electromagnetic scattering problem with a perfect conductor and
a prolate spheroidal conductor are considered. Finally, the numerical
results obtained from Clifford algebra valued BEM show a good
agreement with those of finite element method (FEM) [34] and
method of fundamental solutions (MFS) [35].

2. Problem statement of electromagnetic scattering

The typical electromagnetic scattering problem in the fre-
quency domain is governed by Maxwell's equations as shown
below:

ρ∇⋅
→

( ) = ( ) ( )D x x , 1f
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( ) −
→

( ) =
→
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where
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( )E x is the electric field,
→

( )D x is the electric displacement

field,
→

( )B x is the magnetic flux density,
→

( )H x is the magnetic field

strength,
→

( )J xf is the free current density, ρ ( )xf is the free charge
density and ω is the angular frequency. For the linear isotropic
medium, the constitutive equations are shown below:
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where ε and μ are the permittivity and the permeability, respec-
tively. The relation between ε and μ is

ε μ
ω= =

( )k
c

1
,

7

where k and c denote the wave number and the speed of the
electromagnetic wave. In a vacuum, it is usually to use the symbols
ε0 and μ0 to stand for the permittivity and the permeability, re-
spectively. The values of ε0 and μ0 are

ε ≈ × ⋅ ⋅ ⋅ ( )− − −8.854187817 10 A s kg m , 80
12 2 4 1 3

μ π= × ⋅ ⋅ ⋅ ( )− − m4 10 A s kg , 90
7 2

respectively. Also, c0 is the speed of light in a vacuum and its value
is

ε μ
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1
299792458 m s .
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Substituting Eqs. (5) to (7) into Eqs. (1) to (4), we obtain
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∇⋅
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The boundary conditions for an electromagnetic scattering
problem with a perfect conductor are
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where →( )n x is a unit inward normal vector on the conductor sur-
face and
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in which the superscripts “in” and “s” stand for the incident wave
and the scattering field, respectively.

3. Clifford algebra and Clifford analysis in ( )Cl3

3.1. Algebraic structures of Clifford algebra ( )Cl3

The Clifford product e ej k (in that order, denoted by juxtaposi-
tion) of ej and ek is defined by the Clifford product rule

δ+ = = ( )e e e e j k2 , , 1, 2, 3. 19j k k j jk

The basis elements of Clifford algebra in three-dimensional
Euclidean space are generated from =∅e 1 and { }ej by the rule of
Eq. (19) and we have eight bases
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