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a b s t r a c t

The subtraction and adding-back technique for Regularized Meshless Method (RMM) has been proposed
by Young et al. (2005) [8] on 2-D Laplace problem and extended to 3-D Laplace problem by Young et al.
(2009) [13], where the kernel functions of double layer potentials were adopted to desingularize fun-
damental solution singularity while the source points are overlapped on the physical points. Here the
Single Layer Regularized Meshless Method (SRMM) is proposed. The solutions are represented by single
layer potential. The singularity of the fundamental solution is desingularized by the carefully chosen
particular solution in the null-fields of the boundary integral equation using the subtraction and adding-
back technique for the Dirichlet boundary condition. The double layer potential is adopted for the
Neumann boundary condition. The numerical examples show that the convergence trend and accuracy of
the SRMM are better than those of using other methods (RMM, IBDS) by one or two orders of magnitude.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Method of Fundamental Solutions (MFS) is a typical
meshless boundary collocation method. However the choice of
source points is arbitrary and without a particular rule. Many
Boundary Meshless Methods with source points coincident with
physical points have been proposed in the literature. These
methods use different techniques to avoid the singularity of fun-
damental solution. Boundary Node Method (BNM) [1] adopts the
interpolation procedure to circumvent the singularity. Boundary
Points Method (BPM) [2] uses the ‘moving elements’ to avoid the
singularity. Boundary Particle Method (BPM) [3], Boundary Knot
Method (BKM) [4] employ an alternative non-singular kernel
function to circumvent the singularity. Boundary Distributed
Source (BDS) method [5], Improved Boundary Distributed Source
(IBDS) [6], Non-Singular Method of fundamental solution [7] re-
moves the singularities by distributed source over areas (for 2D) or
volumes (for 3D) covering the source points.

Regularized Meshless Method (RMM) which uses the de-
singularization of subtracting and adding back technique was
proposed by Young et al. (2005) [8] for 2-D Laplace problem, and
then applied to different problems [9–12]. This method was later
extended to 3-D Laplace problem [13]. The double layer potential
was adopted as the fundamental solution for the convenience of
using null-fields boundary integral equation to desingularize the

fundamental solution. For the Dirichlet problem, the particular
solution ( ) =u s 1 was used in the null-fields boundary integral
equation to get the diagonal elements. In this paper the particular
solution = + + ( ) = 〈 ( − )〉p n p px y z u s, ,x s x is chosen for the null-
fields boundary integral equation to derive the diagonal elements
for the Dirichlet problem. By this particular solution, the diagonal
elements can be represented by the single layer potential.

This paper is also similar to the idea of Singular Boundary
Method [14,15] to get the magnitude of singular source, which also
uses the single layer as the fundamental solution. But in the SBM
[14] or ISBM [15], the inverse interpolation technique (IIT) was
adopted to get the singular source magnitude for the Dirichlet
problem. They got the Neumann problem singular source magni-
tude by the subtraction and adding-back technique in null-fields
boundary integral equation firstly, then integrated the solution to
achieve the Dirichlet problem singular source magnitude, the
constant for the integration was derived by the inverse inter-
polation from the domain points. In this paper, the Dirichlet pro-
blem singular source magnitude is directly derived from the null-
field integral equation by the subtraction and adding-back tech-
nique using the single layer potential, without the need of inverse
interpolation.

In the following sections, the theory of the Single Layer Reg-
ularized Meshless Method (SRMM) is introduced. Then the Di-
richlet problem and Neumann problem for sphere, ring torus,
peanut are tested by the proposed SRMM, and also compared with
the RMM [13] and IBDS [7].
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2. Formulation of single layer regularized meshless method

From the boundary value problem Laplace equation in 3D do-
main Ω

Ω▿ ( ) = ∈ ( )u x x0, 12

subject to the following boundary conditions:

Γ( ) = ¯ ( ) ∈ ( ) ( )u x u x x, Dirichlet boundary condition 2D

Γ( ) = ∂
∂

( ) = ¯ ( ) ∈ ( ) ( )n
q x

u
x q x x, Neumann boundary condition 3N

where u is the potential field, Ω is a bounded domain with
boundary Γ Γ Γ= +D N , n presents the outward normal unit vector
at x.

The solution u(x) and ∂ ( ) ∂nu x / of the Laplace problem can be
approximated by a linear combination of the fundamental solution
with respect to different source points sj as follows:
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where xi is the ith physical point, sj is the jth source point located
on the physical boundary, αj is the jth unknown intensity of the
distributed source at sj, N is the number of source points and
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are the fundamental solution and its physical normal derivation of
three-dimensional Laplace equation, = ∥ − ∥r x si j , 〈 〉, denotes the
inner product. In Eqs. (4) and (5) the αj can be solved by the linear
equations which satisfy the boundary condition. The only un-
knowns are the ( )U x s,i i for the Dirichlet problem and ( )Q x s,i i for
the Neumann problem. Followed by Young et al. (2005) [8], the
null-fields of the boundary integral equation on the direct method
is used to derive the ( )Q x s,i i .
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where the superscript e denotes the exterior domain. If the par-
ticular solution ( ) =u s 1 and ∂ ( ) ∂ =nu s / 0s

e are chosen, Eq. (8) can
be rewritten as follows:
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When the collocation point x approaches the boundary, we can
discretize Eq. (9) as follows:
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When the source point sj moves close to the collocation point xi,
we have
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If the nodes on the boundary are uniformly distributed, then
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Now we choose other particular solution u(s) for the Laplace
equation to derive ( )U x s,e

i i .
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Then the null-fields equation (8)
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When the collocation point x approaches the boundary, we can
discretize Eq. (17) as follows:
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The benefits of using the particular solution Eq. (15) to derive Eq.
(18) are obvious: when the →x si j, on the one hand the coefficient

for ( )U x s,e
i i is 1; on the other hand, the coefficient for ∂ ( )

∂n
G x s,i i

si
e is 0,

which is avoided to solve the singularity of ∂ ( )
∂n

G x s,i i

si
e . If another

particular solution u(s) is selected for the Laplace equation to de-
rive ( )U x s,e

i i , these benefits disappear and the error for ( )U x s,e
i i

increase.
According to the dependency of the normal vectors on the

fundamental solutions of interior and exterior Laplace equation,
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where the superscript i denotes the interior domain.
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