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a b s t r a c t

The interior field method (IFM) is applied to Neumann problems for Laplace's equation in elliptic do-
mains. The polynomial convergence rates are derived, and small condition number as O(N) can be ob-
tained, where N is the number of particular solutions used. Moreover, the effective condition number as
( )O 1 is explored, to display excellent stability (Li et al., 2015 [21]). Numerical experiments are carried out,

to support the analysis made. The error analysis of the IFM for Dirichlet problems in circular domains is
reported in Li et al. (2016) [19]. The error and stability analysis of the IFM for Neumann problems in
elliptic domains is more advanced and challenging; this is the first goal of this paper. The second goal is
to compare the Neumann problems with the degenerate scales of Dirichlet problems; some useful gui-
dances are found for application. From the comparisons, the conservation law is essential to guarantee
the unique solutions. The adaptive processes are also proposed to deal with the algorithm singularity of
Dirichlet problems; they may be applied to the boundary element method (BEM), the original NFM, and
the indirect BIEM for the arbitrary smooth boundary or the convex polygonal boundary.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The interior field method (IFM) and the null field method
(NFM) have been developed in [23,25] for Laplace's equation in
elliptic domains, where the explicit algebraic equations are de-
rived. Only the Dirichlet problems and the mixed problems are
studied in [23,25], but the Neumann problems are the theme of
this paper. A strict analysis of errors and stability is important for
any numerical method. The error analysis of the IFM is provided in
[19] for Dirichlet problems of Laplace's equation in circular do-
mains. However, the error and stability analysis of the IFM for
Neumann problems in elliptic domains is more advanced and
challenging; this is the first goal of this paper. The polynomial
convergence rates are derived, and small condition number as
O(N) can be obtained, where N is the number of particular solu-
tions used. Moreover, the effective condition number as ( )O 1 is
explored, to display excellent stability [21]. Numerical experiments

are carried out, to support the analysis made. Since the interior
field method (IFM) is equivalent to the second kind NFM, when the
field nodes Q are located on the domain boundary, the error and
stability analysis in this paper is also valid for the second kind NFM
when ∈ ∂Q S (see [16,25]).

The second goal is to compare Neumann problems with de-
generate scales of Dirichlet problems; some useful guidances are
found for application. The conservation law of flux is essential for
seeking the unique solutions in degenerate scales. Moreover, the
adaptive processes are proposed, to deal with the algorithm sin-
gularity of the IFM and the NFM for Dirichlet problems. The
adaptive processes may be applied to the BEM, the original NFM,
and the indirect BIEM for arbitrary smooth boundary and the
convex polygonal boundary.

More references related to the IFM and the NFM are given in
[19]. This paper is organized as follows. In the next section, the
algorithms of the IFM are described for Neumann problems in
elliptic domains with one elliptic hole. In Section 3, the error
bounds are derived for the IFM in Sobolev norms, to prove the
polynomial convergence rates. In Section 4, the stability analysis is
explored for the collocation IFM (CIFM), and in Section 5, numer-
ical experiments are carried out. In Section 6, comparisons are
made with the degenerate scales of Dirichlet problems, and the
adaptive processes are proposed. In the last section, a few
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concluding remarks are made.

2. Numerical algorithms

Consider the Neumann problem in an annular domain S (see
Fig. 1),
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where f and g are the known functions, ∂SR and ∂SR1 are the exterior

and the interior elliptic boundaries of S, respectively, and =ν ν
∂
∂u u is

the exterior normal derivatives on ∂ ∪ ∂S SR R1. For the existence of
any solution, the exterior and the interior boundaries are assumed
to have no overlap (see [19]),

∂ ∩ ∂ = ∅ ( )S S . 2.3R R1

Also the known functions in (2.2) must obey the consistent con-
dition (i.e., the conservation law of flux),
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to guarantee the existence of infinite solutions. Hence, a solution
of (2.1) and (2.2) plus any constant is also the solution. For elliptic
domains, we need the elliptic coordinates ρ θ( ), defined by

σ ρ θ σ ρ θ= = ( )x ycosh cos , sinh sin , 2.50 0

where σ ρ> ≤ < ∞0, 00 and θ π≤ ≤0 2 . When ρ ρ= > 00 , Eq.
(2.5) leads to an ellipse:
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where two semi-axes are σ ρ=a cosh0 0 and σ ρ=b sinh0 0. Let the
exterior ellipse SR by ρ ≤ R be located with origin ( )0, 0 , where the
elliptic coordinates ρ θ( ), are given in (2.5). The local elliptic co-
ordinates ρ θ( ¯ ¯), are defined by

σ ρ θ σ ρ θ σ¯ = ¯ ¯ ¯ = ¯ ¯ > ( )x ycosh cos , sinh sin , 0, 2.71 1 1

with origin ( )x y,1 1 . The Cartesian coordinates ( ¯ ¯ )x y, in (2.7) are
rotated from axis X, by a counter-clockwise angle Θ as shown in

Fig. 1. Then the interior ellipse SR1 is denoted by ρ̄ ≤ R1 in co-
ordinates ρ θ( ¯ ¯), . The annular domain denoted by = ⧹S S SR R1, and its
boundary by ∂ = ∂ ∪ ∂S S SR R1.

The functions f and g in (2.2) are assumed to have approx-
imations of series from [23],
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where ¯p q p, ,k k k and q̄k are the known coefficients. In (2.8) and

(2.9), the functions, τ θ τ θ θ( ) = ( ) = +R R, sinh sin0 0
2 2 and

τ θ τ θ θ( ¯) = ( ¯) = + ¯R R, sinh sin1 1 1
2

1
2 . Substituting (2.8) and (2.9)

into conservation law (2.4), the constraint between coefficients p0
and p̄0 can be obtained,

+ ¯ = ( )p p 0. 2.100 0

Suppose that the solutions on ∂S can also be approximated as
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where ¯a b a, ,k k k and b̄k are unknown coefficients. The interior so-
lutions can be found from [23]
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where the transformations between ρ θ( ), and ρ θ( ¯ ¯), are given in
[23]. For the Neumann problem, ( = )a c0 is an arbitrary constant
(also see [16]). In computation, this arbitrary constant is excluded
as an unknown coefficient. Note that in (2.13), coefficient ā0 is
absent, therefore, there are only ( + )M N2 2 unknown coefficients

¯a b a, ,k k k and ¯ ( > )b k 0k in (2.13). The interior solutions (2.13) are
derived in [23] from the interior field equations under the field
nodes inside of S. When ∈ (∂ ∪ ∂ )u H S SR R

3
1 and ∈ (∂ ∪ ∂ )νu H S SR R

2
1 ,

the interior solutions (2.13) and their derivatives hold until
∂ ∪ ∂S SR R1, based on the analysis in [20,23,25]. Therefore, the un-
known coefficients can be sought directly from the Neumann
boundary conditions in (2.2) with (2.8) and (2.9):
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Fig. 1. The annular domain of ellipse SR with an elliptic hole SR1.
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