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a b s t r a c t

The recently published four-node quadrilateral element with continuous nodal stress (Quad4-CNS) is
extended to free and forced vibration analyses of two-dimensional solids. The Quad4-CNS element can
be regarded as a partition-of-unity (PU) based ‘FE-Meshfree’ element which inherits better accuracy,
higher convergence rate, and high tolerance to mesh distortion from the meshfree methods, while
preserving the Kronecker-delta property of the finite element method (FEM). Moreover, the Quad4-CNS
element is free from the linear dependence problem which otherwise cripples many of the PU based
finite elements. Several free and forced vibration problems are solved and the performance of the ele-
ment is compared with that of the four-node isoparametric quadrilateral element (Quad4) and eight-
node isoparametric quadrilateral element (Quad8). The results show that, for regular meshes, the per-
formance of the element is superior to that of Quad4 element, and comparable to that of Quad8 element.
For distorted meshes, the present element has better mesh-distortion tolerance than Quad4 and Quad8
elements.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the past several decades, the finite element method (FEM)
[1] has been extensively used in many fields of engineering [2–4].
Nevertheless, accuracy of some classic isoparametric elements is
highly sensitive to mesh distortions [5]. Recently, the meshfree or
meshless methods (MMs) which do not need a mesh to discretize
the problem domain and therefore are not limited by mesh dis-
tortion woes [6], have attracted many researchers. The meshfree
methods are very suitable to solve practical problems including
large deformation [7] and fracture propagation [8]. Some of the
important works associated with meshfree methods are Smoothed
Particle Hydrodynamics (SPH) [9], Diffuse Element Method (DEM)
[10], Element-Free Galerkin method (EFG) [11], reproducing kernel
particle method (RKPM) [12], stable particle methods [13], mesh-
free local Petrov-Galerkin method (MLPG) [14], point interpolation
method (PIM) [15], radial point interpolation method (RPIM) [16]
and smoothed point interpolation methods [17]. Like FEM, the
meshfree methods either are not free from drawbacks [6]. Shape
functions in some of the meshfree methods do not possess the
much desired Kronecker delta property which renders the appli-
cation of boundary condition more difficult than in FEM. The

meshfree methods are also computationally more expensive than
FEM [6]. As a result, some hybrid schemes [18] have been pro-
posed to improve the properties of meshfree methods.

In recent years, Partition-of-unity (PU) based methods [19]
have been developed and successfully used in many fields [20–23].
Notable among these PU based methods are hp-clouds [24], gen-
eralized finite element method (GFEM) [25], particle-partition of
unity method [26], numerical manifold method [27–31] and ex-
tended finite element method (XFEM) [32]. An attractive feature of
PU-based methods is that they are capable of constructing a higher
order global approximation by simply increasing the order of the
local approximation functions without adding new nodes [33].
However, “linear dependence” (LD) problem occurs when both the
PU functions and the local functions are taken as explicit poly-
nomials [6,19]. Here, the “linear dependence” (LD) problem means
after applying the basic boundary condition to eliminate the rigid
body displacement, the global stiffness matrix is still singular.
Some effective approaches to eliminate the LD problems can be
found in [34,35]. In other front, Liu and his co-workers have de-
veloped a family of smoothed finite element methods (S-FEMs),
such as cell-based S-FEM (CS-FEM) [36], node-based S-FEM (NS-
FEM) [37], edge-based S-FEM (ES-FEM) [38], and face-based S-FEM
(FS-FEM) [39] to improve FEM. Thanks to the smoothing technique
[40], the S-FEM has “softer” stiffness than FEM, and yields more
accurate solutions [36].

In order to synergize the individual strengths of meshfree and
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finite element methods, Rajendran et al. developed a new family of
PU-based [19] ‘FE-Meshfree’ elements [6,33,41] for linear, geo-
metry nonlinear and free vibration analyses. ‘FE-Meshfree’ ele-
ments combine the classical shape functions of isoparametric
elements with the shape functions of a meshfree method so as to
arrive at hybrid shape functions termed as composite shape func-
tions [33]. As a result, these ‘FE-Meshfree’ elements inherit better
accuracy, higher convergence rate, and high tolerance to mesh
distortion from the meshfree methods, while preserving the Kro-
necker-delta property of the standard isoparametric elements.
Moreover, these ‘FE-Meshfree’ elements have been known to be
free from the linear dependence problem which otherwise crip-
ples many of the PU-based finite elements [6]. Although ‘FE-
Meshfree’ elements can construct higher order shape functions
than classical isoparametric elements, derivatives of composite
shape functions of ‘FE-Meshfree’ elements [6,33,41,42] are not
continuous at nodes and extra smoothing operations are required
to calculate nodal stress in post processing. To further improve the
property of ‘FE-Meshfree’ elements, Tang et al. [43] developed a
new hybrid ‘FE-Meshfree’ four-node quadrilateral element with
continuous nodal stress (Quad4-CNS). Furthermore, a hybrid ‘FE-
Meshfree’ three-node triangular element with continuous nodal
stress (Trig3-CNS) [44] was developed. These two elements have
been successfully used for linear elasticity problems [43,44].

In the present paper, the Quad4-CNS element is extended to
free and forced vibration analyses of two dimensional solids. The
outline of this paper is as follows. Section 2 briefly reviews the
construction of shape functions for the Quad4-CNS element. Sec-
tion 3 gives the equations for free and forced vibration analyses.
Typical numerical tests are carried out to assess accuracy of the
proposed Quad4-CNS element in Section 4. Finally, conclusions are
drawn in Section 5.

2. Construction shape function for Quad4-CNS

Consider a quadrilateral domain Ω described by four nodes {P1
P2 P3 P4} and introduce an arbitrary point P(x) with the coordinates
x¼(x, y). According to the concept of PUM [19], in the quadrilateral
domain Ω, the Quad4-CNS global approximation uh(x) can be re-
presented in the following form:

( ) = ( ) ( ) + ( ) ( ) + ( ) ( ) + ( ) ( ) ( )x x x x x x x x xu w u w u w u w u 1h
1 1 2 2 3 3 4 4

where, wi(x) and ui(x) are the weight functions and the nodal
approximations associated with node i.

The weight functions { }( ) =xw i, 1, 2, 3, 4i with the global
Cartesian coordinates are mapped from 'parent’ weight functions
in the local coordinates [43]. The formulations for coordinate
transformation are represented as:
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where ( ) ( ) ( ) ( )ξ η ξ η ξ η ξ η˜ ˜ ˜ ˜N N N N, , , , , , ,1 2 3 4 are expressed in the fol-
lowing form [1]
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Unlike the 'FE-Meshfree’ QUAD4 element with least square
point interpolation functions (Quad4-LSPIM) [41], which uses the
shape functions of Quad4 to define its weight functions, the
weight functions of Quad4-CNS element are written as [43]

( )( ) ( )( )ξ η ξ η ξ η ξ η= + + + + − −

= ( )
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2 2

There are three important features for the weight functions of
Quad4-CNS element as described in Appendix A.

The nodal approximations associated with node i, as yet un-
known, are expressed in the interpolation form as

∑ ϕ( ) = ^ ( )
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in which n[i] is the total number of nodes in the domain Ωi, (Fig.

B1), aj is the nodal displacement of node j and ϕ̂ ( )
⎡⎣ ⎤⎦

xj

i
is the shape

function of the nodal approximation ui(x) associated with node j.
(The procedure to obtain ui is described in Appendix B.)

The Quad4-CNS approximation uh(x) can be represented in a
common form:
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in which ϕ ( )xi is the shape function corresponding to the node i. N

is the total number of the nodes in domain Ω̂ (Fig. B2). Substitu-
tion of Eq. (6) into Eq. (1), and then the Quad4-CNS global ap-
proximation can be constructed as
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By manipulating Eq. (8), the Quad4-CNS shape functions in Eq.
(7) can be represented as
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If node j is not in the neighboring domain Ωi, then ϕ̂ ( )
⎡⎣ ⎤⎦

xj
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defined to be of zero value,

ϕ̂ ( ) ≡ ( )
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Some useful properties of Quad4-CNS are shown as follows
[43]:

(1) The derivative of weight function is of zero value at the nodes.
(2) The derivative of Quad4-CNS global approximation is con-

tinuous at the nodes.
(3) The Kronecker-delta property

ϕ δ( ) = ( )x 11i j ij

3. Forced and free vibration analyses

Consider a 2D problem defined in domain V and let domain V
be discretized by a set of non-overlapping quadrilateral domain:

= ∪ =V Vi
N

i1 . Using the Quad4-CNS shape functions derived in
Section 2, the discretized equation system of dynamic analysis is
obtained as [16,38]

+ ̇ + = ( )Ma Ca Ka f" 12

where K, and M are the global stiffness matrix and global mass
matrix, respectively, and defined by

∑ ∑= = ( )K K M M, 13ij ij
e

ij ij
e

where
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