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a b s t r a c t

Multiphase fluid flow problems are of importance in many disciplines including hydrology and petro-
leum reservoir engineering. Standard methods such as the finite differences, finite volumes and ex-
panded mixed finite elements methods use very general unstructured grids and need different grid
adaptation strategies to ensure optimal solution of this non-linear problem. The meshless methods seem
to be quite a good alternative to these classical mesh-based methods. In our work we used the meshless
Petrov–Galerkin local method based on the pressure-saturation formulation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A multiphase flow appears mainly in problems related to the
environment and the energy. This paper is focused on the mod-
elling of two-phase flow, for example the flow of a wetting phase
like the groundwater and a non-wetting phase like dense non-
aqueous liquids through the porous medium. The problem is non-
linear and therefore the simulation requires usually large meshes
and also too much computational time even for simulations of
testing examples. Typical numerical methods used to solve these
problems are based on different formulations of the finite differ-
ences, volume and element methods [1,2] or the discontinuous
Galerkin method [3,4].

Meshless methods are widely used in the last decades due to
their flexibility in solving various boundary value problems and
possibility to reduce a problem with generation of different me-
shes. Therefore these methods are considered as a powerful ap-
proach to solve partial differential equations of various kinds. The
large number of meshless methods have been developed by dif-
ferent authors as several types of least square collocation meshless
method [5–9], meshless local Petrov–Galerkin method (MLPG)
[10,11], local boundary integral element method (LBIEM) [11], ra-
dial basis integral equation method (RBIEM) [12], etc. The least
square collocation methods require no integration but they have
deficiency with formulation of boundary conditions and singula-
rities as pumping wells. The MLPG, LBIEM, and RBIEM are the local

weak methods and they can easy deal with different boundary
conditions but evaluation of integrals is needed.

In our paper we try to present a meshless numerical method
based on local Petrov–Galerkin formulation (MLPG). This method
uses a local symmetric weak form to solve the problem of multi-
phase flow. The most important advantages of this method are
simple computation of all needed integrals as they are regular and
also very easy setting of boundary conditions of the second kind.
This property results from the weak formulation of the solved
problem.

The MLPG method has been introduced by Atluri et al. [10,11].
It is characterized as meshless since distributed nodal points,
covering the domain, are employed. These nodal points can be
randomly spread over the domain but it is well-known that using
completely randomly distributed nodes may lead to less accurate
results [13]. Therefore a certain effort should be invested into the
positioning of the points or more sophisticated algorithms for
selection neighbourhood nodes used for interpolation can be also
used [14]. All needed integrals are carried out on the local sub-
domain centred at every point. All unknown variables are ap-
proximated by some interpolation method to obtain a system of
non-linear equations. Solving this system of equations leads to a
numerical solution of the problem. Atluri et al. [10] used the
moving least squares (MLS) approximation scheme but nowadays
the radial basis functions (RBFs) interpolation can be used instead
(see e.g. [15,16]). An important advantage of RBF interpolation is
an existence of the delta property and therefore the boundary
conditions of the first kind can be easily defined.

In this paper the solution of two-phase flow through porous
medium based on the MLPG-RBF method is presented. Our main
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goal was to investigate the robustness and the ability of this
meshless method to solve this non-linear and heterogeneous
problems.

2. Governing equations of multiphase flow

A two-phase flow through porous media can be usually de-
scribed by the mass balance equation and Darcy's law for each of
the fluid phases (see also [3])

( )ρ ϕ
ρ ρ

∂
∂

+ ∇ =
( )

α α
α α α α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

S

t
v f.

1

μ
ρ= − ∇ −

( )
α

α

α
α α

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

Kk
p g

2
r

where α = w is the wetting phase (e.g. water), α = n is the non-
wetting phase (e.g. oil or air), ϕ and K are the porosity and the
absolute permeability of the porous media. ρ μα α α α αS p v, , , , and αkr

are, respectively, the saturation, pressure, volumetric velocity,
density, viscosity and the relative permeability of the α-phase.

In addition to Eqs. (1) and (2) the following relations should be
also fulfilled
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where pc is the capillary pressure.
To simplify the Darcy's law equation (2) we define phase mo-
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and (2) can be written as
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We have focused on the incompressible fluid flow, i. e. the den-
sities ρα are constant. Furthermore, we assume that the porosity ϕ
remains constant over the whole domain of interest. Then Eq. (1)
can be simplified
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The mass balance equation (6) and the Darcy's law (5) is the basis
to description the multiphase incompressible flow. The pressure
and saturation can be coupled using (3). Several formulations of
the two-phase flow problem are possible (see e.g. [3] or [17]). In
our paper we focused on the formulation based on the saturation
and pressure of the wetting phase (Sw and pw).
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where λt is the total mobility defined as λ λ λ= +t w n. These two
equations are coupled because the mobilities and the capillary
pressure are functions of the effective wetting phase saturation Se
defined as
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where Srw and Srn are residual wetting and non-wetting phase

saturations. In our paper the Brooks–Corey model [18] is con-
sidered
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where m is the dimensionless pore size distribution index. The
capillary pressure is defined as
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where pd is a constant entry pressure.

3. Meshless local Petrov–Galerkin formulation of the problem

The entire domain Ω is covered by nodes located inside the
area and also on the global boundary Γ (see Fig. 1). The local weak
formulation of the multiphase flow is formulated over a local sub-
domain, created around every node. This sub-domain can be any
simple geometry (rectangular or circle in 2D).

The mutual relationship of particular nodes is based on some
interpolation algorithm. The local radial basis functions (RBFs) are
used to approximate unknown pressure and saturation of the
wetting phase pw and Sw in the neighbourhood or support of a
reference point i. Multiquadric functions are one of the most
popular radial functions used for this purpose and they have been
used in our paper. They can be defined as
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where rij is a distance between points i and j and ϵ is the so-called
shape factor of multiquadric function. The formula of Hardy [19]
with a slight modification is applied to the local RBFs (see [15]) to
find the optimal value of the shape factor, which can be computed
in point i as
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The interpolation of the unknown variables can be written using
the basis functions φij in the form (more details can be found in
e.g. [16] or [15])

∑ ∑φ φ= =
( )= =

p p S S,
13

wi
j

N

ij wj wi
j

N

ij wj
1 1

where N is the number of neighbourhood points. There are several
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Fig. 1. Points in the global area.
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