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a b s t r a c t

Quadratically consistent nodal integration (QCNI) for three-dimensional meshfree Galerkin methods
with second order approximation is presented. The number of integration points is dramatically reduced
since the weak form is evaluated only at approximation nodes. The stabilization for such reduced in-
tegration stems from the correction of nodal derivatives. Such correction is based on the orthogonality
condition between the stress and strain difference in the framework of Hu-Washizu three-field varia-
tional principle. Taylor series expansion is employed such that a linear strain field in each background
integration cell can be exactly reproduced. Three-dimensional quadratic patch test is exactly passed by
QCNI and thus it possesses quadratic exactness. In contrast, the stabilized conforming nodal integration
(SCNI) which is so far the most successful nodal integration technique can only reproduce a constant
strain field in each integration cell and fails to pass the quadratic patch test. The comprehensive su-
periorities of the proposed QCNI over the existing SCNI in accuracy, convergence, efficiency and
smoothness of the resulting stress fields are further demonstrated by several three-dimensional nu-
merical examples. Especially, it is shown in some example that the accuracy of QCNI is surprisingly four
order higher than that of SCNI.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Meshfree Galerkin methods developed in the past twenty
years, such as the element-free Galerkin method [1] and the re-
producing kernel particle method [2], have several appealing ad-
vantages in comparison with the traditional finite element method
(FEM) which is the dominant numerical tool for engineering
problems. For example, meshfree approximation is constructed
entirely in terms of a set of scattered nodes. Elements which stand
for pre-defined nodal connectivity are no longer needed. This gives
meshfree methods substantial flexibilities in large deformation
analysis where element distortion poses a major issue for FEM. In
addition, h-adaptivity is easier to be implemented in meshfree
methods since only nodes instead of elements need to be added or
removed adaptively. Furthermore, meshfree approximation is

much smoother than the Lagrangian interpolation of FEM and this
may lead to better convergence. It is also much more convenient to
construct high order approximation in meshfree methods than
that in FEM since the high order elements such as the 20-node
hexahedron are completely not needed. As a result, meshfree
methods have the potential to perform better than FEM in nu-
merical analysis and thus may challenge the dominance of the
latter.

However, so far meshfree methods are still not widely accepted
in industry due to their low computational efficiency. Since
meshfree approximation functions are non-polynomial rational
functions, numerical integration of the weak form requires much
more evaluation points in meshfree methods than that in FEM,
especially for three-dimensional analysis which is considered in
this paper. For example, × ×5 5 5 Gauss points per background
hexahedral cell are used for the three-dimensional EFG method in
Barry and Saigal [3]. It is impossible to use such a large number of
integration points in numerical analysis of a real engineering
problem. But even worse, these numerous evaluation points still
cannot integrate the weak form exactly and therefore the accuracy
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of the method is not acceptable.
Several strategies were developed in the literature to reduce

the number of integration points for meshfree methods, such as
the stress-point integration [4,5], the support domain integration
[6], etc. Among them, the nodal integration which employs only
the approximation nodes as the integration points is the dominant
technology and attracts intensive studies. It is noted that two sets
of points are used in FEM and meshfree methods with Gauss in-
tegration: one set for approximation (interpolation) and the other
one for integration, whereas only one set of points is employed in
meshfree methods with nodal integration. This makes the method
more truly meshless like. Besides, it also brings some merits. For
instance, the mapping between approximation nodes and in-
tegration points is not needed at all for nodal integration. These
are probably the reasons why nodal integration is popular in
meshfree fields.

Beissel and Belytschko [7] initialized the study of nodal in-
tegration and found that direct nodal integration is unstable and
inaccurate. They introduced a least-square stabilization term into
the weak form. As a result, stability of the method is remarkably
improved. However, its accuracy is still unsatisfactory. Besides, an
artificial parameter is involved and its selection depends on nu-
merical experiments. Nagashima [8] introduced the stabilization
terms by a Taylor expansion of the stiffness matrix. A merit of this
strategy is that it is rational and no artificial parameter is involved.
Liu et al. [9] also used this technique to stabilize the nodal in-
tegration of the radial point interpolation method (RPIM) and
higher order Taylor’s expansion is employed. However, instability
still may present, especially in stress fields [10].

The most successful and widely applied nodal integration in
meshfree fields is the stabilized conforming nodal integration
(SCNI) proposed by Chen et al. [11]. According to the satisfaction of
the linear patch test condition, they formulated an integration
constraint (IC) and further developed a strain smoothing to meet
IC exactly. Therefore, linear patch test can be exactly passed by
SCNI whereas high order Gauss integration cannot, that is, SCNI
dramatically reduces the number of quadrature points and
meanwhile effectively improves the accuracy. This leads to a big
increase in efficiency. Also, no artificial parameter is involved.
Consequently, SCNI has been widely applied in various studies, see
[12–18]. The technique of strain smoothing has also been extended
to natural-element method [19], radial point interpolation method
[20] and even finite element method [21] and has been applied to
various 3D problems such as heat transfer [22], adaptive analysis
[23,24], fluid-structure interaction (FSI) [25], etc.

However, Puso et al. [26] reported that SCNI may still cause
instabilities near domain boundaries. Furthermore, Duan et al. [27]
showed that the strain smoothing in SCNI can only reproduce a
constant strain field for each background integration cell and
therefore SCNI is not adequate for high order meshfree approx-
imation which requires linear and higher order strain fields should
be exactly reproduced. To remedy this limitation, they proposed a
consistency framework guiding the correction of nodal derivatives
based on the divergence theorem between a nodal shape function
and its derivatives. The proposed framework can be applied to
arbitrary order approximations. For quadratic meshfree approx-
imation, they demonstrated that, under this framework, a three-
point integration scheme, namely the QC3 scheme, can be
straightforwardly established. This scheme can reproduce a linear
strain field for each integration cell. As a consequence, it can pass
the quadratic patch test exactly whereas the SCNI cannot. The
accuracy, convergence, efficiency and stability are also remarkably
improved by QC3 in comparison to those of SCNI. Reformulation of
QC3 based on the Hu-Washizu three-field variational principle is
presented in [28] and its extension to 3D is given in [29]. However,
QC3 is not nodal integration.

To further develop a nodal integration method, Duan et al. [30]
introduced the high order derivatives into the consistency fra-
mework by using the technique of Taylor series expansion. The
basic idea is that a linear strain field can be reproduced for each
background integration cell by one first-order and two second-
order derivatives at one quadrature point instead of using three
points as in QC3. The developed nodal integration method, namely
quadratically consistent nodal integration (QCNI), has a similar
numerical performance as the QC3 scheme and also possesses
quadratic exactness. Thus, it is much better than SCNI which only
have linear exactness. Chen et al. [31] also proposed an arbitrary
order variationally consistent integration method by correcting the
test function in a Petrov-Galerkin weak form. Second order ex-
actness of the method is demonstrated by numerical examples.
However, it leads to asymmetric stiffness matrix which is com-
putationally inefficient. Besides, so far the method as well as the
QCNI method is still limited to two-dimensional problems.

The purpose of this paper is to extend the QCNI to 3D. In view
of the fact that most real industrial problems are in 3D instead of
in 2D and meshfree methods with Gauss integration employ much
more integration points in 3D than in 2D, such extension is of
great significance, especially for the application of the meshfree
methods to real industrial problems. To our knowledge, the pro-
posed scheme is the first nodal integration for three-dimensional
meshfree Galerkin methods which provides second order
exactness.

The remaining paper is structured as follows. The formulation
of the three-dimensional EFG method with its MLS approximation
and Galerkin discretization is briefly reviewed in Section 2. The
existing stabilized conforming nodal integration (SCNI) is outlined
in Section 3. Derivation of the proposed QCNI method from the
Hu-Washizu three-field variational principle is described in Sec-
tion 4. The consistency of the corrected nodal derivatives are
proved in Section 5. Numerical results are presented in Section 6
followed by the conclusion in Section 7.

2. Element-free Galerkin method: three-dimensional
formulations

Consider a three dimensional elastostatic problem in the do-
main Ω ⊂ R3 discretized by a set of nodes XI , the approximation of
the displacement vector at an arbitrary point x can be written as

∑( ) = ( ) = ( )
( )

u x N x U N x U
1
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where U is the vector of nodal displacement parameter and
= ⎡⎣ ⎤⎦u v wUI I I I

T . The matrix of moving least square (MLS) nodal
shape functions is
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where n is the number of nodes, ( ) = ( )NN x x II I 3 and I3is the ×3 3
identity matrix. The MLS shape function ( )N xI is usually con-
structed by a weighted interpolation residual as presented in [1].
Here, we follow Liu et al. [32] and Belytschko and Fleming [33]
where the shape function is constructed directly from the con-
sistency condition. To begin with this type of presentation, the
shape function ( )N xI is written as
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where ( )p x is a vector of base functions and ( )w xI a weight
function. In this paper, the following quadratic base is employed
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