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ABSTRACT

In this work, an Improved Non-singular Method of Fundamental Solutions (INMFS) is developed for the
solution of two-dimensional linear elasticity problems. The source points and field points are collocated
on the physical boundary, while the conventional MFS requires a troublesome fictitious boundary outside
the physical domain. In INMFS, the desingularization is, for complying with the displacement boundary
conditions, achieved by replacement of the concentrated point sources by distributed sources over cir-
cular discs around the singularity, and for complying with the traction boundary conditions by assuming
the balance of the forces. This procedure is much more efficient than the previously proposed procedure
that involves two reference solutions and at the same time enables INMFS for solving problems with
internal voids and inclusions. The method has been assessed by comparison with MFS, analytical solu-
tions and previous desingularization technique. The method is easy to code, accurate, efficient, and
straightforwardly extendable to three dimensions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been a strong development of mesh
reduction methods in which polygon-like meshes are reduced or
avoided [1-7]. The Method of Fundamental Solutions (MFS)
(sometimes also called the F-Trefftz method, charge simulation
method, or singularity method [8-10]) is a numerical technique
that belongs to the class of methods generally called boundary
methods. The other well-known representative of these methods
is the boundary element method (BEM) [11,12]. Both methods are
best applicable in situations where a fundamental solution of the
partial differential equation in question is known. In such cases,
the dimensionality of the discretisation is reduced. The BEM, for
example, requires polygonisation of the boundary surfaces in
general three-dimensional (3D) cases, and boundary curves in
general 2D cases. This BEM approach requires the solution of
complicated regular, weakly singular, strongly singular, and hyper-
singular integrals over boundary segments which is usually quite a
cumbersome and a non-trivial task [13]. The MFS [14] has certain
advantages over BEM that stem mostly from the fact that only the
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“pointisation” of the boundary is needed, which completely avoids
any integral evaluations, and makes no principal difference in
coding between the 2D and the 3D cases. On the other hand, when
a singular fundamental solution is involved, the MFS requires
nodes that are positioned on an artificial boundary located outside
the computational domain. The location of the artificial boundary
represents the most serious problem of the MFS and has to be at
the present dealt with heuristically [15] or by some optimization
procedure [16,17] that requires substantial additional computing
time. The expansion coefficients of the solution in MFS are de-
termined so that the solution satisfies the boundary condition
with the help of direct collocation [14,15], least squares approx-
imation [18] or by an integral fit of the boundary data [19,20].
Moreover, it has certain advantages over BEM, e.g. no singularity
and no boundary integrals are required. Both BEM and MFS are
ideal candidates for solving isotropic and anisotropic linear elas-
ticity problems [21,22], since the fundamental solution for this
type of problems is known [23,24].

In the traditional MFS, the determination of the proper distance
between the real boundary and the fictitious boundary is trouble-
some. In recent years, various efforts have been made, aiming to
remove this drawback of the MFS, so that the source points can be
placed on the real boundary directly. Young et al. [25,26] were the
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first to propose to place the source points at the boundary in the
MES. They introduce novel ways to determine the diagonal collo-
cation matrix coefficients. The diagonal coefficients were de-
termined directly for simple geometries or by using the results from
the BEM, based on the fact that the MFS and the indirect boundary
integral formulation are similar in nature. In their approach, in-
formation of the neighbouring points before and after each source
point is needed, in order to form line segments for integrating the
kernels to obtain the diagonal coefficients. This is essentially the
same information of the element connectivity as in a BEM mesh. A
subtracting and add-back technique was used to get rid of the ar-
tificial boundary in [27]. A similarly modified MFS was proposed in
[28], where the diagonal terms are determined by the integration of
the fundamental solution on the line segments formed by using
neighbouring points, and the use of a constant solution to de-
termine the diagonal coefficients of the derivatives of the funda-
mental solution in different coordinate directions. This approach is
very stable, but it amounts to solve the problem twice. The group
of Chen [29] improved the evaluation of the singular and nearly
singular kernels in MFS for two-dimensional (2D) elasticity pro-
blems, based on the evaluation strategy, derived originally for BEM
[13]. They also [30] proposed a non-singular MFS for determining
the diagonal coefficients in the modified MFS by applying a known
solution inside the domain, so that the diagonal coefficients from
both the fundamental solution and its derivative can be determined
indirectly, without using any element or integration concept. Again,
this approach is appealing, stable, and accurate but it is costly for
solving large-scale problems due to the need to solve the problem
twice. The solution also depends on the choice of the internal re-
ference points. The singular boundary method is applied to two-
dimensional (2D) elasticity problems in [31], by using an inverse
interpolation technique to regularize the singularity of the funda-
mental solution of the equation governing the problem of interest
the regularized meshless method for the nonhomogeneous pro-
blems in conjunction with the dual reciprocity technique for the
evaluation of the particular solution is given in [32]. The present
authors [33,34] recently presented a new boundary meshfree ap-
proach named Non-singular MFS (NMFS) for isotropic and aniso-
tropic elasticity problems based on the Boundary Distributed
Source (BDS) method [35], which has been recently extended to
solve the porous media problems with moving boundaries [36] and
Stokes flow problems [37]. The NMFS has been developed to solve
also the multi-body elastic problems [38] and 3D elasticity pro-
blems with displacement boundary conditions [39]. The NMFS has
no fictitious boundaries and singularities. In NMFS, the con-
centrated point sources are replaced with area-distributed sources
covering the source points for 2D problems. These area-distributed
sources represent analytical integration of the original singular
fundamental solution, so that they preserve the advantage of di-
agonal dominance for the system of equations, while they have no
troublesome singularity issues. Liu [33] used the approach of Sarler
[28] to determine the diagonal coefficients of the derivatives of the
fundamental solution. The problem with the NMFS is that a careful
selection is needed for reference solutions. Recently, Kim [40]
suggested a much simpler way to determine the diagonal elements
for the Neumann boundary conditions by invoking that the
boundary integration of the normal gradient of the potential should
vanish. In the present paper, the approach from [40] is extended
from potential problems to linear elasticity problems. This approach
can be applied also to the external domain problems, which pre-
viously could not be tackled by the NMFS. Numerical examples,
relevant to micromechanics problems, with mixed boundary con-
ditions are presented. The feasibility and the accuracy of the newly
developed approach is demonstrated for problems of deformation
of bodies with elastic or rigid inclusions and/or voids.

2. Governing equations

Consider a two-dimensional solid confined to domain € with
boundary I. The solid behaviour is ideally isotropic elastic. Let us
introduce a two-dimensional Cartesian coordinate system with
orthonormal base vectors iy and i, and coordinates p, and p,of
point P with position vector p = p,ix + p, . The solid is governed
by Navier’s equations for plane strain problems, which are the
conditions for equilibrium, expressed with the displacement u
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where v is Poisson’s ratio. The boundary is divided into two not
necessarily connected parts "= I'° + 7. On the part r° the dis-
placement (Dirichlet) boundary conditions are given, and on the
part I'" the traction (Neumann) boundary conditions are given (see
Fig. 1).
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where . and . representing known functions. The strains e,
¢, £ = x, y are related to the displacement gradients by
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The stress components o; ¢, £ =X,y are for the plane strain
cases related to the strains through Hooke’s law
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where pu =E[2(1 +v) is the shear modulus of elasticity, E is
modulus of elasticity, or Young’s modulus, 4 = 2vu/(1 — 2v) is Lamé
constant, and & is the Kronecker delta
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The formulation for plane stress problems can be obtained by

introducing the modified Poisson's coefficient »* and modified
Young's modulus E’, defined as

> I

Fig. 1. Problem domain @ with displacement (Dirichlet) '° and traction (Neu-
mann) T parts of the boundary.
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