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a b s t r a c t

This paper presents a system of integral equations for the determination of contact stresses on a part of
the boundary of elastic half-space by measured data of displacements on the rest of the stress-free
boundary. Inverse problems like this are refereed to as conditionally ill-posed with pronounced de-
pendence of the solution from small perturbations in measured data. The 3D problem formulation is
based on spatial harmonic functions. It is proposed to use a Trefftz-type method for the sought harmonic
functions based on the radial basis functions to solve the system of integral equations. A synthetic ex-
ample is presented to illustrate the proposed approach.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Determination of stresses acting in contact zones between two
or more bodies is the primary problem of contact mechanics. The
classical approach [1] assumes different types of boundary con-
ditions within contact zones. These can be formulated in terms of
stresses for soft punches, displacement for rigid punches or certain
linear relationships between stresses and displacements to take
friction into account. In all these cases the correspondent bound-
ary value problem is well posed, thus, it possesses a unique and
stable solution.

An alternative approach to contact problems deals with so-
called, ill-posed problems, in which no boundary conditions are
specified in a contact zone but some excessive data are given (or
measured) on the rest of the boundary. In particular, if all com-
ponents of displacements are measured on a stress-free boundary,
then six boundary conditions (three homogeneous for the stress
vector and three non-homogeneous for the displacement vector)
may be imposed outside the contact zone, which make the
boundary problem to be overspecified outside the contact zone
and underspecified inside it. Perhaps, the first comprehensive
analysis of solvability of such problems for elastic domains has
been conducted by Shvab [2]. On the other hand, this problem can
be reformulated in terms of holomorphic vectors, on which the
proof of uniqueness for the Cauchy problem has been reported in
another paper of the same author [3] (note different spelling of the
surname as a result of translation). The author has also admitted
fair results of the solution obtained without regularisation.

Regularisation techniques have been developed to address
different engineering and geophysics inverse (incorrectly posed)
problems to obtain stable solutions. Ill-posed problems are

generally defined as the problems with no unique or unstable
solutions [4]; they require the application of special methods of
solutions; for instance, the methods based on Tikhonov's reg-
ularisation have been reported to be an effective tool for obtaining
stable solutions in many fields of applied mathematics [4,5]. In
solid mechanics ill-posed formulations are less developed, al-
though there is a wide class of applications (as identification of
elastic properties, defects or buried objects, e.g. cracks or inclu-
sions) that are incorrectly posed mathematically, see review by
Bonnet and Constantinescu [6]. The mentioned problems can be
effectively reduced to the formulation with boundary conditions
overspecified (the number of scalar conditions is greater than the
problem dimension; e.g., for spatial elasticity it is greater than
three) on a part of the boundary and underspecified on its rest.
The methods applied to handle such formulations are diverse, but
many of them employ the methods based on integral equations, e.
g, Tanaka and Masuda [7] for identification of flaw shape in a body,
Kubo [8] for overview of inverse problems in fracture mechanics,
Zabaras [9] for contact problems where measurements at the
contact area are difficult, Gao and Mura [10] for taking into ac-
count plastic flow near crack tips, Hsieh and Mura [11] for non-
destructive cavity identification, Galybin [12] for analytic solutions
in half-plane for surface subsidence monitoring, Yeih et al.
[13] and Bui [14] for providing Fredholm integral equations,
Simpson et al. [15] for the development of special elements for
contact problems. Finite element formulations are also frequently
used, e.g. [16–18]. Methods of complex variables for plane pro-
blems have been applied in, e.g., Galybin [19] and Tsvelodub [20].

Analytical solutions are rarely available for ill-posed formula-
tions (with exceptions for simple domains, e.g. for wedge-like
domains [19]), therefore the development of stable numerical
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methods has recently become the main focus of different research.
One should acknowledge contribution made by the researches
from University of Leeds in the development of regularisation
techniques, iterative methods and algorithms for solving non-
classical boundary value problems [21–23]. In particular it has
been shown that the use of the SVD regularisation presents a va-
luable computational tool in elastostatics, e.g. [24,25]. It will used
further to present numerical results for the problem formulated
below.

2. Problem formulation

Let an isotropic elastic half-space, x3r0, be loaded on a part of
the boundary by a punch (elastic, rigid or soft). The magnitudes of
the contact stresses and the shape of the punch (both its profile
and the contact zone) are, in general, unknown. Instead, the dis-
placements are known on the free part of the boundary x3¼0
outside the contact zone. It is further assumed that the action of
the punch is replaced by certain unknown stress distribution over
a planar subdomain Ω bellowing to the boundary x3¼0 that is
referred to as a contact zone. The elastic constants are denoted
further as G for the modulus of rigidity and ν for Poisson's ratio.
We will further normalise the stress components by doubled shear
modulus, i.e. suppose 2G¼1 for compactness.

The problem consists of finding the contact stress distribution
in the contact zone Ω, which in turn makes possible the de-
termination of the stress and the displacements fields in the entire
domain.

Six symmetric components of the stress tensor, sij (i,j¼1,2,3),
satisfy three differential equations of equilibrium (DEE) written
down without taking into account the body forces

σ∂ = = ( )i j0, , 1, 2, 3 1j ij

They are connected to the components of displacements, ui
(i¼1,2,3), by the Hooke's law for small strains

δ= + (∂ + ∂ ) = ∂ + ∂ + ∂

= ( )
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Hereafter the symbols ∂i, ∂ij and ∂ijk stand for partial derivatives
or the first and higher orders respectively with respect to the
variables shown in subscript (i,j,k¼1,2,3); δij is the Kronecker-delta
(δij¼1, δij¼0, i≠j).

The boundary conditions assume the form
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where the functions uj
0 are known on the stress-free boundary

(measured, in general, with certain errors). It should be noted that
the partial derivatives of the boundary values with respect to the
variables ( )x x,1 2 are also known, which will be used further on.

We also assume that the following integrals representing the
resulting force P¼(P1,P2,P3) may be known

∬ ∬
∬
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The general solution for a 3D domain can be expressed in terms
of 3 independent harmonic functions. Based on the Trefftz integral
[26] it is possible to derive the following relationships for the

components of displacements and stresses in terms of harmonic
functions (f,g,h), see detail in Sih and Liebowitz [27]

ν ν= ( − )∂ − ( − )∂ + ∂ (∂ + ∂ + ∂ ) ( )u f g x f g h1 2 2 1 51 1 3 3 1 3 1 2

ν ν= ( − )∂ − ( − )∂ + ∂ (∂ + ∂ + ∂ ) ( )u f h x f g h1 2 2 1 62 2 3 3 2 3 1 2

ν ν= − ( − )∂ − ( − )(∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )u f g h x f g h2 1 1 2 73 3 1 2 3 3 3 1 2
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σ = − ∂ + ∂ (∂ + ∂ + ∂ ) ( )f x f g h 1033 33 3 33 3 1 2

σ ν ν= ( − )∂ − ( − )∂ (∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )f g h x f g h1 2 1 1112 12 3 1 2 3 12 3 1 2

σ ν ν= − ( − )∂ + ∂ (∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )g g h x f g h1 1213 33 1 1 2 3 13 3 1 2

σ ν ν= − ( − )∂ + ∂ (∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )h g h x f g h1 1323 33 2 1 2 3 23 3 1 2

It should be noted that the function f addresses the case of
normal stresses applied to x3¼0 with zero shear stresses, while
the functions g,h present the general solution for the case when
the shear stresses are applied on the boundary and the normal
stresses are absent.

The following equality is valid for any harmonic function H
everywhere in the domain including its boundary:

∂ + ∂ = − ∂ ( )H H H 1411 22 33

It will be used in subsequent derivations where necessary.
The derivatives of the shear stress components are found as

follows:

σ ν ν∂ = − ( − )∂ + ∂ (∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )g g h x f g h1 151 13 133 11 1 2 3 113 3 1 2

σ ν ν∂ = − ( − )∂ + ∂ (∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )g g h x f g h1 162 13 233 12 1 2 3 123 3 1 2

σ ν ν∂ = − ( − )∂ + ∂ (∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )h g h x f g h1 171 23 133 12 1 2 3 123 3 1 2

σ ν ν∂ = − ( − )∂ + ∂ (∂ + ∂ ) + ∂ (∂ + ∂ + ∂ ) ( )h g h x f g h1 182 23 233 22 1 2 3 223 3 1 2

Using (15)–(18) one can form the following combinations:

σ σ ν∂ − ∂ = − ( − )∂ (∂ − ∂ ) ( )g h1 191 23 2 13 33 1 2

σ σ ν ν∂ + ∂ = − ( − )∂ (∂ + ∂ ) − ∂ (∂ + ∂ )
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The derivatives of the first two components of the displace-
ments are as follows:

ν ν∂ = ( − )∂ − ( − )∂ + ∂ (∂ + ∂ + ∂ ) ( )u f g x f g h1 2 2 1 211 1 11 31 3 11 3 1 2

ν ν∂ = ( − )∂ − ( − )∂ + ∂ (∂ + ∂ + ∂ ) ( )u f g x f g h1 2 2 1 222 1 12 23 3 12 3 1 2

ν ν∂ = ( − )∂ − ( − )∂ + ∂ (∂ + ∂ + ∂ ) ( )u f h x f g h1 2 2 1 231 2 12 13 3 12 3 1 2

ν ν∂ = ( − )∂ − ( − )∂ + ∂ (∂ + ∂ + ∂ ) ( )u f h x f g h1 2 2 1 242 2 22 23 3 22 3 1 2

It follows from (21)–(24) that

ν∂ − ∂ = ( − )∂ (∂ − ∂ ) ( )u u g h2 1 251 2 2 1 3 2 1
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