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In this paper, we present a numerical method for periodic band structure calculation, which is associated
with eigenvalue problems for periodic problems, using the boundary element method (BEM). In the BEM,
the eigenvalue problems are converted into non-linear eigenvalue problems, which are not tractable
with conventional eigensolvers. In the present study, to solve non-linear eigenvalue problems, the block
Sakurai-Sugiura (SS) method, which can convert non-linear eigenvalue problems into generalised ei-
genvalue problems, is utilised. A fast direct solver for the BEM with a fast multipole representation is
employed in the algorithm of the block SS method since algebraic equations need to be solved for
multiple right-hand sides in the block SS method. We conduct several numerical experiments related to
phononic structures to confirm the validity and efficiency of the proposed method. We confirm that the
proposed method can calculate the band structure of the phononic structures, and the computational
time with the proposed method is less than that with a conventional FEM-based eigensolvers with
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triangular linear elements even for relatively small problems.
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1. Introduction

In the last several decades, periodic structures such as photonic
and phononic crystals have attracted considerable attention of
researchers and engineers [1]. This is because these materials have
complete bandgaps for waves. A complete bandgap is defined as a
frequency range in which waves cannot propagate in any direction.
A periodic dielectric material which has bandgaps for an electro-
magnetic wave (including light) is called a photonic crystal and its
elastic counterpart is called a phononic crystal or structure. These
materials are expected to be used in the next generation of wave
devices, such as lasers, waveguides, and slow light in the field of
optics and acoustic filters, noise controlling devices, and transdu-
cers in the field of mechanics. To realise these technologies, it is
important to develop a fast and accurate numerical solver for
bandgap calculations.

Several numerical methods for bandgap calculations have been
proposed. As classical methods, we can mention plane wave ex-
pansion (PWE) [2,3] and the multiple scattering theory (MST)
[4,5]. The applicability of these methods is limited to problems
with simple geometry. As general methods for bandgap calcula-
tions, although the finite difference in time domain (FDTD)
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method and the finite element method (FEM) are widely used, the
applicability of these methods may not be sufficient for realistic
engineering problems in some cases. The FDTD requires the dis-
cretisation of the whole domain, which makes it difficult to apply
this method to large-scale photonic/phononic simulations, parti-
cularly in three-dimensional domain. Further, since FDTD is a
method to solve the wave equation in the time domain, we need to
calculate wave propagation for sufficiently long period of time for
waves containing various frequencies, and convert the obtained
wave distribution into the spectrum domain, which may be time
consuming, particularly for three-dimensional problems with a
complex geometry. Although the FEM can directly solve the ei-
genvalue problems in the frequency domain, it still suffers from
domain discretisation. It is known that, when hp-FEM is used to
calculate eigenvalues for partial differential equations (PDEs), the
eigenvalues converge exponentially as the degree of freedom
(DoF) increases [6]. Although the exponential convergence is at-
tractive, hp-FEM is, to the knowledge of the authors, not ne-
cessarily widely used for band structure calculation. This is partly
because the implementation of the hp-FEM is relatively compli-
cated, and the mesh discretisation cost is expensive for compli-
cated geometry.

As a possible alternative for numerical bandgap calculations,
we can mention the boundary element method (BEM). We, how-
ever, encounter non-linear eigenvalue problems which are not
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tractable with conventional eigensolvers when we naively employ
the BEM to reformulate the eigenvalue problems related to peri-
odic problems. Irrespective of its difficulty to deal with the non-
linear eigenvalue problem, some researchers have proposed
bandgap calculations with the BEM [7-10]. These methods are
classified into the following two categories:

e Consider the frequency @ as a given parameter and the Bloch
wave vector k as an eigenvalue.

e Consider the Bloch wave vector k as a given parameter and the
frequency w as an eigenvalue.

The former gives a generalised (resp. quadratic) eigenvalue pro-
blem for a square (resp. triangular) lattice, while the latter gives a
non-linear eigenvalue problem [7]. Li et al. [7,8] used the former
approach, and successfully solved photonic/phononic band struc-
tures by relaxing the periodic boundary condition to ensure
numerical stability. Yuan et al. [9] are also considered as the
former approach, in which a Dirichlet-to-Neumann map is utilised.
As an example of the latter method, Barnett and Greengard [10]
presented an efficient evaluation of the Green function, which
satisfies the periodic boundary condition, and its application to
bandgap calculations. Since they focused on the evaluation of the
periodic Green function, they simply plotted the smallest singular
value of the relevant matrix to find the eigenvalue. Thus, there are
few studies on an effective numerical method to solve the non-
linear eigenvalue problem stemming from the latter approach.

Recently, some promising solvers for non-linear eigenvalue pro-
blems are developed; Sakurai-Sugiura (SS) method [11,12], non-linear
Arnoldi method [13] and the infinite Arnoldi method [14]. Among
them, the SS method shall be used in this paper. Sakurai and Sugiura
originally proposed the SS method to find certain eigenvalues of a
generalised eigenvalue problem that lie in a given domain of the
complex plane [11], and Asakura et al. pointed out the possibility that
the SS method can solve a non-linear eigenvalue problem [12]. Since
its development, applications of the SS method are rapidly enhanced.
The SS method is, thus far, applied to the calculations of the core-
excited state of formaldehyde [15], eigenvalue problems in lattice
quantum chromodynamics (QCD) [ 16], eigenvalue problems in 2D and
3D Helmholtz' equations [17,18], eigenvalue problems related wave-
guides [19], etc. Also, as a similar method to the SS method, we can
mention the method by Beyn [20]. In our previous paper [21], we have
attempted to apply the SS method to calculate the bandgap for a
phononic structure in 2D. Since the conventional BEM without any
acceleration technique is combined with the SS method in [21], we
have calculated bandgaps for a simple phononic structure which has a
circular scatterer in the unit cell. In order to deal with a more complex
geometry, in this paper, we present a combination of an accelerated
BEM with the SS method.

In the algorithm of the SS method, when multiple eigenvalues
are concerned, we need to solve algebraic equations with multiple
right-hand sides (block SS method). Because of the multiple right-
hand sides, the use of the widely used fast multipole boundary
element method (FMBEM) [22,23], which involves iterative solvers
for algebraic equations, may not accelerate the eigensolver. In such
a case, it is preferable to use a direct solver rather than an iterative
solver to solve the algebraic equations. Thus far, some fast direct
solvers, in which algebraic equations of size N obtained as a dis-
cretised boundary integral equation can be solved by a direct
solver with an O(N log® N), (a« = 0, 1, 2) computational complexity,
have been proposed [24,25]. In this study, we utilise a direct solver
for the BEM with a fast multipole representation [26], which is
henceforth denoted as “direct FMM". Although the direct FMM
might not achieve O(N log® N) complexity for large N, it is rela-
tively easy to implement and is efficient for moderately sized
problems. Thus, our main focus in this paper is to accelerate

bandgap calculations with the BEM and the SS method for 2D
photonic/phononic crystals with a relatively complex geometry
which can be modelled with moderate N.

The rest of the paper is organised as follows: After eigenvalue
problems related to photonic/phononic crystals and its re-
formulation with the boundary integral equation are stated in
Sections 2.1 and 2.2, respectively, the formulation of the SS
method is reviewed in Section 2.3. In Sections 2.4 and 2.5, we
present the formulation of the direct FMM and its extension for
periodic problems, respectively. In Section 3, we show some nu-
merical examples to show the validity and the efficiency of the
proposed method.

Although we focus on orthotropic periodic problems in this
paper, other general periodic problems can be appropriately for-
mulated with minor modifications.

2. Formulation

2.1. Statement of the eigenvalue problem associated with periodic
structures

We consider a doubly orthotropic periodic array of scatterers in
elastic matrix £2 embedded in the unit cell U:={xI0 < x; < L;, i =1, 2},
where L; denotes the period along the x;-axis (Fig. 1). Let u(x) be an
out-of-plane time harmonic displacement satisfying the following
Helmholtz equation:

V2ux) + o?lux =0 xeQ,
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where p, 4 and @ denote the density, the shear modulus and the
angular frequency, respectively. We are interested in finding @ with
which a non-trivial function u satisfies the Helmholtz equation (1)
along with the following homogeneous boundary conditions:
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and the following quasi-periodic boundary conditions:
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where I, ¢ Ip=0Q2 and I3=I3\T;, denote Dirichlet and the Neumann
boundary, respectively. Ij represents a part of the boundary of U de-
fined as I:=uji_12 I, @i={XI0<x3_; <34, x=0,i=1,2}. We
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Fig. 1. Periodic problem.
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