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a b s t r a c t

A new approach to the solution of non-homogeneous hyperbolic boundary value problems is casted here
using the hybrid-Trefftz stress/flux elements. Similarly to the Dual Reciprocity Method, the technique
adopted in this paper uses a Trefftz-compliant set of functions to approximate the complementary so-
lution of the problem and an additional trial basis to approximate its particular solution. However, the
particular and complementary solutions are obtained here in a single step, and not sequentially, as ty-
pical of the Dual Reciprocity Method. The trial functions used for both particular and complementary
solutions are merged together in the same basis and offered full flexibility to combine so as to recover the
enforced equations in the best possible way. This option enables Trefftz-compliant functions to com-
pensate for deficiencies of the particular solution basis, meaning that accurate total solutions can be
obtained with relatively poor particular solution approximations. The formulation preserves the Her-
mitian, sparse and localized structure that typifies the matrix of coefficients of hybrid-Trefftz finite
elements and avoids the drawbacks of the collocation procedures that arise in the Dual Reciprocity
Method. Moreover, all terms of the matrix of coefficients are reduced to boundary integral expressions
provided the particular solution trial functions satisfy the static problem obtained after discarding both
non-homogeneous and time derivative terms from the governing equation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid-Trefftz elements are variants of the hybrid finite ele-
ments with the essential trait that the domain approximation
basis is built using free-field solutions of the differential equation
governing the problem [1]. Similar to boundary elements, the use
of Trefftz-compliant trial functions reduces all terms of the solving
system to boundary integral expressions. However, unlike con-
ventional boundary elements, regular solutions of the governing
equation are used to construct the trial basis (unless points of
singularity are expected to occur) and the solving system is gen-
erally sparse and Hermitian.

Hybrid-Trefftz elements were first introduced by Stein in 1973
[2], but their widespread use and mathematical foundations are
due to the pioneering work of Herrera (e.g. [3]) and Jirousek (e.g.
[4]) through the 1980s and the 1990s. More recent contributions
are due, for instance, to Qin (e.g. [5,6]) and Freitas (e.g. [7,8]). A
recent monograph on the topic, including the discussion of re-
levant implementation issues and algorithms is also due to Qin [9].

As compared to conventional (conforming displacement) finite

elements, hybrid-Trefftz elements feature trial bases selected from
the free-field solution space of the differential equation governing
the problem (the Trefftz-compliance condition). Consequently, the
(hierarchical) approximation bases are tailored for each problem
that is being solved. The considerable richness in physical in-
formation enables Trefftz-compliant trial bases to model accu-
rately problems that are notoriously difficult to solve using con-
ventional elements as, for instance, those involving highly oscillat-
ing or high gradient solutions, nearly incompressible constituents
or grossly distorted meshes. The use of non-conforming meshes
with super-sized finite elements is also affordable [8]. Another key
advantage of hybrid-Trefftz finite elements is that the construction
of the solving system does not involve summation of coefficients
over neighbouring elements. This feature adds considerable flex-
ibility to the definition of the model, as different orders of p-re-
finement can be defined on each finite element and essential
boundary. The price to be paid for securing these advantages is
having to deal with trial functions that are numerically heavier than
their conventional counterpart and do not admit, in general, ana-
lytic integration. Moreover, Trefftz elements may experience addi-
tional difficulties when dealing with non-homogeneous boundary
value problems, as discussed at large in this work.

Hybrid-Trefftz elements come in two flavors, which are coined
here using the computational mechanics terminology as
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displacement model and stress model. The difference between the
alternative models is mainly related to the boundary condition
that is considered essential and thus explicitly enforced in the
formulation (e.g. [10]). The displacement compatibility is enforced
on the Dirichlet and inter-element boundaries in the displacement
model. Conversely, in the stress model, the stress equilibrium is
enforced on the Neumann and inter-element boundaries. De-
pending on the specific interest of the analyst, one model or an-
other can be adopted. For instance, for limit state analyses in
Structural Mechanics, the stress field is the primary objective,
supporting the use of the stress model. Conversely, in thermic
analyses, the temperature field may be of more interest and thus
the temperature (i.e. equivalent to the displacement) model
should be adopted.

When the problem to be solved is not homogeneous, the pre-
servation of the above properties requires that an exact particular
solution is found. Depending on the source (i.e. non-homo-
geneous) term, such closed form solution may or may not be
available. For instance, analytic particular solutions were reported
for elastostatic beams subjected to their own weight and for hol-
low cylinders subjected to axisymmetric temperature fields with
logarithmic variations [9]. However, exact particular solutions are
not easy to find, in general, for transient dynamic problems where
the source terms are defined by the initial conditions of the cur-
rent time step [11]. When this is the case, the Trefftz-compliant
trial basis, constructed using functions that satisfy the homo-
geneous form of the governing equations, is generally unable to
model correctly the particular solution since it lays outside of its
span.

To overcome this issue, two main alternatives exist.
One is to evaluate the particular solution as the internal pro-

duct of the source term with the fundamental solution of the
differential operator present in the governing equation. This ap-
proach, while certainly viable, involves domain integrations of the
(singular) fundamental solutions, a drawback that boundary
methods typically tend to avoid.

The other mainstream alternative is the Dual Reciprocity
Method (DRM). In the DRM, the particular solution is approxi-
mated using some additional trial functions, while the approx-
imation of the complementary solution is handled by the Trefftz-
compliant basis. However, if the additional trial functions were
simply added to the Trefftz-compliant basis, they would cause, in
general, domain integral terms to emerge in the matrix of coeffi-
cients, since they do not comply with the Trefftz condition. To
avoid handling domain integrals, the DRM does not couple the
particular and complementary solution bases. Instead, the parti-
cular solution is approximated first, using a two step process. In
the first step, an approximation of the source function is obtained,
typically using radial basis functions and domain collocation. In
the second step, the differential equation is solved analytically,
having the approximation of the source function as the non-
homogeneous term [12]. Besides the inherent disadvantages of the
collocation process (e.g. fully populated, non-symmetric and ra-
ther ill-conditioned systems), cumbersome expressions are gen-
erally obtained for the particular solution trial functions, which
may also feature points of singularity, especially for hyperbolic
differential operators [13].

In the finite element context, the DRM was applied by Qin and
his co-workers to the solution of the Poisson's equation and to
two-dimensional thermoelastic problems in [9], and to three-di-
mensional elastostatic and thermoelastic problems in [14] and
[15], respectively. Radial basis functions were used to construct the
source function approximation in all cases. An alternative ap-
proach aimed at avoiding the cumbersome expressions of the re-
sulting particular solution trial functions was recently presented
by Moldovan and Radu [16]. As opposed to other DRM variants,

the technique uses the same trial functions for both source func-
tion and particular solution approximations. These functions have
simple expressions and need not be singular, unless a singular
particular solution is physically justified. The approximation is
shown to be convergent and robust to mesh distortion.

Once an approximation of the particular solution is found, the
complementary solution can be obtained using any boundary
method. Hybrid-Trefftz finite elements are used by both Qin and
Moldovan in the cited papers.

In a recent paper [11], we presented an alternative to the DRM
for the solution of non-homogeneous hyperbolic boundary value
problems. Cast in the framework of the displacement model of the
hybrid-Trefftz finite element, the typifying feature of this approach
is that the particular and complementary solution trial functions
are merged together in the same trial basis. Consequently, the
solution is obtained in a single step, through the solution of a
sparse and Hermitian solving system, since no collocation is re-
quired. It is shown that a suitable choice of the particular solution
trial basis is able to cancel out most of the domain integral terms
in the matrix of coefficients, and those still remaining are nu-
merically easy to evaluate. Moreover, the coupling of the particular
and complementary trial functions allow the two parts of the basis
to combine freely and compensate for each other's weaknesses.
Unlike the DRM, however, the coupling of the particular and
complementary solution bases means that the whole formulation
must be established anew when the technique used to obtain the
complementary solution is changed.

The procedure proposed in Ref. [11] is thus extended here in
the context of the stress model of the hybrid-Trefftz finite element.
Besides the advantages inherent to the use of the stress model in
applications where the quality of the stress/flux field is more re-
levant to the analyst, this extension is justified by the additional
advantages that the stress model features as compared to the
displacement model presented in Ref. [11]. Indeed, the use of the
stress model cancels out all domain integral terms in the matrix of
the coefficients and one (of the two) domain integral terms on the
right-hand side of the finite element solving system. Consequently,
the stress model is simpler to implement, while still securing the
key advantages of the displacement model, as discussed above.

The paper opens with the general definition of the hyperbolic
boundary value problem that is tackled in the paper. The proce-
dure for the discretization in time of the governing equations is
succinctly described, since it is presented at length in Ref. [11]. The
stress model of the hybrid-Trefftz finite element is formulated
next, for the general hyperbolic problem. Finally, the application of
the methodology is illustrated for a two-dimensional hyperbolic
boundary value problem with analytic solution, in order to assess
its accuracy and robustness.

2. Definition of the problem

Hyperbolic initial boundary value problems occur in many
branches of engineering, like Acoustics, Electromagnetism and
Structural Dynamics. Since Structural Dynamics tend to be the
source of some of the most general hyperbolic problems and is an
area where the use of stress models is highly justified, the fol-
lowing presentation uses the Structural Dynamics terminology in
order to define the problem and coin the respective weights.
However, the applicability of this approach is not limited in any
way to this area and the applications presented in Section 5 are
designed to reflect that.

A general hyperbolic initial boundary value problem defined
over the domain V presented in Fig. 1 is typically described by the
equilibrium, compatibility and constitutive equations,
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