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a b s t r a c t

Solving multi-dimensional eigenmodes problem for elliptic operator using radial basis functions (RBFs)
was proposed by Platte and Driscoll (2004) [14]. They convert the eigenmodes problem to an eigenpairs
problem of a finite dimensional matrix. We formulate an approach based on using finite order inter-
polating polynomials as eigenfunctions for eigenmodes problem. We prove that, under some simple
conditions on the RBFs, two approaches converge when increasingly flat BRFs are being used. These
results are supported by numerical examples.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multiquadric (MQ) collocation method, first pioneered by
Kansa [10], is a highly efficient numerical method for solving
partial differential equations (PDEs). Platte and Driscoll [14] also
discussed using Radial Basis Functions (RBFs) to compute eigen-
modes of elliptic operators. They concluded from numerical results
that RBFs method is superior to basic finite-element methods for
computing eigenmodes of Laplace operator in two dimensions.

To be precise, they studied the following eigenmodes problem
of elliptic operators. Given a linear elliptic second-order partial
differential operator L and a bounded region Ω in Rn with
boundary ∂Ω, they sought eigenpairs ðλ;uÞAðC;CðΩÞÞ satisfying
Luþλu¼ 0; in Ω; and

LBu¼ 0; on ∂Ω; ð1Þ
where LB is a linear boundary operator of the form

LBu¼ auþbðn �∇uÞ: ð2Þ
Here, a and b are given constants and n is the unit outward
normal vector defined on the boundary. Firstly, they used an
interpolating RBF approximation of an eigenfunction of (1), then
they approximated the operator L by a matrix that incorporates
the boundary conditions. Now, the above eigenvalue problem has
been replaced with a finite-dimensional eigenvalue problem.

Finally, standard techniques to find the eigenvalues and eigen-
vectors of this matrix are used.

The behaviors of the solutions in the limit of nearly flat RBFs
have been studied for both interpolation problems and partial
differential equations. In the study of several types of RBFs inter-
polation, such as MQ, Driscoll and Fornberg [4] proved that, in the
1-D case, the interpolant converges to the Lagrange interpolating
polynomial as the basis functions become increasingly flat. For
multivariate interpolation problem, Larsson and Fornberg [11] also
proved that the interpolating RBF approximation converges to an
interpolating polynomial, provided suitable constraints on the
given data points.

For solving 1-D Poisson's equation, Chen et al. [3] proved that the
approximation by using increasingly flat RBFs in the method of fun-
damental solutions (MFS) to the given Poisson's equation reduces to
simply interpolation problem and solution converges in the sense of
Lagrange interpolating polynomial. It is the purpose of this paper to
show that similar results can be obtained for solving eigenvalue
problem for Laplace operator (1) on a multi-dimensional region. We
show that the final matrix associated to the finite-dimensional
eigenvalue problem using increasingly flat RBFs converges entry by
entry to the matrix obtained by using interpolating polynomial as an
eigenfunction of (1). This interpolating polynomial is obtained from
the limiting interpolant using increasingly flat BRFs as in [4]. Note
that, in one space dimension, the interpolant is the Lagrange inter-
polation polynomial. Therefore, the eigenvalues obtained from two
approaches converge. In other words, we show that solving eigen-
value problem for Laplace operator on a multi-dimensional region

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2016.01.014
0955-7997/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: hungch@math.nsysu.edu.tw (C.-H. Hung).

Engineering Analysis with Boundary Elements 66 (2016) 12–19

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2016.01.014
http://dx.doi.org/10.1016/j.enganabound.2016.01.014
http://dx.doi.org/10.1016/j.enganabound.2016.01.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.01.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.01.014&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.01.014&domain=pdf
mailto:hungch@math.nsysu.edu.tw
http://dx.doi.org/10.1016/j.enganabound.2016.01.014


with increasingly flat RBFs has similar asymptotic behaviors as sol-
ving interpolation problem.

In general, a RBFs approach scheme is to write the approxi-
mated solution as a finite expansion of RBFs, then solve for the
coefficient set of the expansion using collocation method. We
prove that, using coefficients obtained from an interpolation pro-
blem, the expansion with respect to the Laplacian of the RBFs
converges to the Laplacian of the interpolating polynomial as the
RBFs become increasingly flat. This crucial proposition leads to the
main results stated above.

The paper is organized as follows. In Section 2, we describe the
interpolation process using RBFs. We review the main results of
Larsson and Fornberg [11] regarding finding the interpolant using
increasingly flat RBFs in Section 3. The main proposition that leads
to main theorem is also given in Section 3. In Section 4 we provide
two approaches to solve the eigenmodes problem for Laplace
operator with homogeneous Dirichlet boundary condition on a
multi-dimensional region. And we show the main theorem that
these two approaches converge when increasingly flat RBFs are
applied. Some numerical results are provided in Section 5. Con-
cluding remarks are given in Section 6.

2. Radial basis function collocation method

2.1. Radial basis functions

A radial function is a multivariate function Φ such that

Φ : Rd-R in the sense that Φðx1;…; xdÞ-ϕ J ðx1;…; xdÞJ2ð Þ:
ð3Þ

Here the Euclidean norm of x¼ ðx1;…; xdÞ is defined as

JxJ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiXd
i ¼ 1

x2i

vuut ¼ r: ð4Þ

RBF collocation method is an “element-free”, or a “meshless”,
technique for generating data-dependent spaces of multivariate
functions. The spaces are spanned by shifted and scaled radial
functions. The shifting is accomplished by using a set of scattered
centers, y1;…; yN in Rd, sometimes called basis points, as the origin
of the RBFs. Reconstruction of functions is then made by trial
functions which are linear combinations:

~uðxÞ≔
XN
j ¼ 1

αjΦðx; yjÞ ¼
XN
j ¼ 1

αjϕðJx�yj J Þ: ð5Þ

Some of the commonly used RBFs are given in Table 1. All of these
RBFs can be scaled by a shape parameter c, or ϵ¼ 1=c, that controls
the flatness (or steepness) of the RBF. This is done in such a way
that ϕðrÞ is replaced by ϕðϵrÞ, or ϕðr=cÞ. For example, the MQ is

scaled as ϕ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵrÞ2þ1

q
, or ϕ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=cÞ2þ1

q
. The effect of the

scaling is that as ϵ gets smaller, or c gets larger, the RBF becomes
flatter. Further detail on RBF can be found in the following excel-
lent books [2,5–7,16].

2.2. Interpolation

A typical interpolation problem has the following form: given
scattered data points fxigNi ¼ 1, and data values fuigNi ¼ 1, find an
interpolant

~uðxÞ ¼
XN
j ¼ 1

αjϕ Jx�yj J
� �

; ð6Þ

where fyjgNj ¼ 1 are the center of the radial basis functions. The
interpolation at collocation points gives

~uðxiÞ �
XN
j ¼ 1

αjϕ Jxi�yj J
� �

¼ ui; i¼ 1;…;N: ð7Þ

This summarizes in a system of equations for the unknown coef-
ficients αj,

AΠ¼ u; ð8Þ

where A is an N � N matrix with elements Aij ¼ϕ Jxi�yj J
� �

,

Π¼ ½α1 α2 ⋯ αN�T , and u¼ ½u1 u2 ⋯ uN �T . The non-singularity of
such system, with distinct centers fyjgNj ¼ 1, was established in the
1930s by Bochner [1] and Schoenberg [15], and in the 1980s by
Micchelli [13], see also a review article [8]. In fact, we can seeΠ as
a function from RN to RN , i.e. Π : RN-RN and ΠðuÞ ¼A �1ðuÞ if
A �1 exists.

We could write (6) as

~uðx; ϵÞ ¼
XN
j ¼ 1

αjϕ Jx�yj J ; ϵ
� �

; ð9Þ

where we have explicitly brought out the role of ϵ (¼1/c) in the
approximation. Driscoll and Fornberg [4] pointed out that the RBFs
presented in Table 1 belong to a class of infinitely smooth RBFs
that can be expanded into a power series

ϕðrj; ϵÞ ¼ϕ Jx�yj J ; ϵ
� �

¼ a0þa1ðϵrjÞ2þa2ðϵrjÞ4þ⋯¼
X1
i ¼ 0

aiðϵrjÞ2i;

ð10Þ
with the coefficients given in Table 2.

3. Definitions and interpolants with increasingly flat RBFs

This section contains definitions for multi-index notations, we
also review some properties of polynomial interpolation and
theorems about interpolants with increasingly flat RBFs in [11]. By
taking Laplacian of the classic RBFs, we obtain new families of
BRFs, we call them Laplacian RBFs. We prove similar results as in
[11] about interpolant in the limit ϵ-0 with these Laplacian RBFs.
That is we show that, using coefficients obtained from an inter-
polation problem, the expansion with respect to the Laplacian
RBFs converges to the Laplacian of the interpolating polynomial as
the RBFs become increasingly flat.

Table 1
Some examples of radial basis functions.

Infinitely smooth RBFs

RBF ϕðrÞ

Gaussian (GA) e� r2

Multiquadric (MQ)
ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ1

p

Inverse Multiquadric (IMQ) 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ1

p

Inverse Quadratic (IQ) 1=ðr2þ1Þ

Table 2
Expansion coefficients for infinitely smooth RBFs.

RBF Coefficients

GA
ai ¼

ð�1Þi
i!

,
i¼ 0;…

MQ
a0 ¼ 1; ai ¼

ð�1Þiþ1

2i
∏i�1

k ¼ 1
2k�1
2k

,
i¼ 1;…

IMQ
a0 ¼ 1; ai ¼ ð�1Þi∏i

k ¼ 1
2k�1
2k

,
i¼ 1;…

IQ ai ¼ ð�1Þi , i¼ 0;…

C.-S. Huang et al. / Engineering Analysis with Boundary Elements 66 (2016) 12–19 13



Download English Version:

https://daneshyari.com/en/article/512087

Download Persian Version:

https://daneshyari.com/article/512087

Daneshyari.com

https://daneshyari.com/en/article/512087
https://daneshyari.com/article/512087
https://daneshyari.com

