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a b s t r a c t

In this study, the two-dimensional physical domain containing cracks is divided into several non-
overlapping parts: rectangular crack-tip regions around crack tips and the outer region without any crack
tip. In each crack-tip region the displacement is approximated with Williams' series; while in the outer
region it is approximated with numerical manifold interpolation. In order to balance accuracy and
efficiency in solution, a transitional zone encompassing each crack-tip region is locally refined with a
structured mesh. To avoid singular integration over a crack-tip region, the potential energy over every
crack-tip region is transformed into the boundary integration. Three different methods to enforce
compatibility on interfaces are compared, concluding the Lagrange multiplier method is superior over
the other two.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture problems have always been popular topics in academic
communities. During the early stage of the history of fracture
mechanics, a large number of analytical solutions for fracture
problems with very regular domains were gained. Given that the
models of practical fracture problems are mostly irregular,
numerical methods are largely employed in research and appli-
cation nowadays. Numerical solution for linear elastic fractures is
one of the most important aspects of theory and application of
different numerical methods. Numerical methods for this problem
include extended finite element method (XFEM) [1,2], element-
free Galerkin method (EFGM) [3], generalized finite element
method [4,5], numerical manifold method (NMM) [6,7], cracking
particles methods [8,9], other meshfree methods [10–13], finite
element methods based on remeshing [14–17], extended isogeo-
metric analysis method [18,19], phantom node method [20], to
name just a few.

In the numerical analysis of linear elastic fractures, the most
fundamental and crucial step is to determine the stress intensity
factor (SIF) and crack tip field. The stress at a crack tip is infinite. It
is greatly difficult to promote accuracy of SIF simply by refinement

of mesh due to singularity. In order to improve accuracy, Fleming
[21] et al. enriched the approximations of element free Galerkin
method with controlling bases of asymptotic crack tip field. Many
others also incorporated these bases into local approximations in
the solution of linear elastic fractures, such as extended element
method [1] and numerical manifold method [22,23]. Direct
incorporation of controlling bases of asymptotic crack tip field into
local approximations is succinct and easy to implement, and the
precision of solution is incredibly enhanced. Unfortunately, Fries
and Belytschko [24] pointed out that this direct enrichment leaded
to singular stiffness matrix in extended finite element methods. In
numerical manifold method the phenomena were also observed.

Williams' series [25] are the analytical solutions of asymptotic
crack tip field. Forthright enrichments with a few items of Wil-
liams' series in XFEM, EFGM and NMM brought about incredible
accuracy. Therefore, one can naturally think of approximating
displacement, strain and stress in the region around each crack tip
by multiple terms of Williams' series. The singular stiffness matrix
caused by direct enrichment of local approximations with a finite
number of items of Williams' series in XFEM and NMM is a bur-
densome problem. A feasible treatment of this problem is to set a
super element around each crack tip. One can set a super element
encompassing the crack tip, in which the displacement is
approximated in a totally different way from that of ordinary
elements. Some treatments are needed to ensure compatibility of
displacement on the outside boundary of the super element. The
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hybrid crack element [26] proposed by Tong et al. is an archetype
of this sort of element.

Tong [26] et al. approximated the displacement within the
hybrid crack element with complex series, while Karihaloo and
Xiao [27] with Williams' series. Karihaloo and Xiao [27] reformu-
lated the hybrid crack element, and evaluated the coefficients of
Williams' series with this method. Then they solved a variety of
problems by hybrid crack element [28,29]. Su and Feng [30] also
studied this method. Since elements of FEM have to accommodate
to crack surfaces, the preprocessing of problems with complicated
domains or cracks is very challenging. While the crack can extend
through elements in XFEM, the mesh of XFEM does not have to
adapt to the crack surface. Thus XFEM is more suitable for fracture
problems than FEM. Based on this, Xiao and Karihaloo [31] com-
bined the hybrid crack element with XFEM to establish a novel
method, and solved linear elastic fracture problems with the new
method. Later, Passieux [32] et al. proposed a multigrid XFEM to
directly determine the SIF.

In all the applications of hybrid crack element mentioned above,
the functional of energy of the hybrid crack element was for-
mulated based on potential energy or generalized potential energy.
In fact, the functional of the hybrid crack element can also be
constituted with complementary or generalized complementary
energy. Long [33] proposed piecewise generalized variational
principles in 1981. Long [34] et al. divided the domain for an linear
elastic fracture problem into several non-overlapping regions, and
approximated displacements with FEM interpolation in the non-
crack-tip region on which the potential energy is defined, and
stresses with Williams' series in the crack-tip region on which the
complementary energy is defined. According to one of the piece-
wise variational principles [33], Long [34] et al. obtained the energy
functional on the entire problem domain based on complementary
energy and potential energy. By using this method, Long et al. got
extremely accurate SIFs. Zhuang [35] et al. also utilized the piece-
wise variational principle [33], but in the non-crack-tip region
replaced FEM interpolation with meshless radial point interpola-
tion, and developed a new method for the evaluation of the linear
elastic crack tip field.

NMM [6] is a reasonable choice for the numerical solution of
problems with discontinuities such as cracks. One can simulate the
discontinuous displacements across crack surfaces by NMM in an
extraordinarily concise manner. The treatment of multiple and
intersecting cracks with XFEM is cumbersome, while NMM can
handle these very easily. No extra techniques are needed to form
the approximation of the displacement in the case of complex
cracks. The only necessary step is to cut mathematical patches
with crack surfaces. NMM has been utilized to deal with fracture
problems in many cases successfully [22,23,36–42]. Hence, the
advantage of NMM to model crack surfaces will be taken in this
study, together with highly precise crack tip field represented by
Williams' series, in order to formulate decomposition methods for
linear elastic fractures.

The outline of the paper is as follow. Section 2 is a brief illustration
of NMM. The representation of discontinuous displacements across
crack surfaces is underlined. The basic idea of partition of unity based
refinement method is briefed in Section 3. The refinement of meshes
for practical problems is also stated. Section 4 is the illustration of the
division of domains for linear elastic fracture problems, approximation
of displacement and energy of each region. In addition, potential energy
in the form of integral over the crack-tip region is transformed into
integral only along boundaries. Thus the treatment of singularity at the
crack tip is circumvented. Three domain decomposition methods are
elaborated in Sections 5–7 respectively. We employ Lagrange multiplier
in Section 5 to enforce compatible displacements across interfaces. The
dual mortar method for the determination of interpolation function for
the Lagrange multiplier is stated. Several factors which can affect the

precision of the solution are studied and multiple problems with
complex cracks are solved to validate the proposed method. The pen-
alty method is adopted in Section 6 for a new domain decomposition
method. In Section 7 another domain decomposition method according
to a piecewise variational principle proposed by Long [33] is estab-
lished. Section 8 is the conclusion of the paper.

2. Brief illustration of NMM

The numerical manifold method (NMM) proposed by Shi [6] is
powerful in modeling static and dynamic failure of materials. It
was elaborated and reviewed in several papers [43–45]. The basic
theory of NMM will be briefly illustrated in the following, and its
advantage in modeling discontinuities such as fractures will be
underlined.

2.1. Mathematical cover, physical cover and manifold elements

NMM introduces two cover systems, the mathematical cover
(MC) and physical cover (PC). Mathematical cover consists of a
series of connected regions. Each one of these connected regions is
called a mathematical patch, which is usually a simply connected
domain. The union of all mathematical patches is the mathema-
tical cover. The mathematical cover does not have to accommodate
to boundaries as in FEM, as long as the mathematical cover can
contain the physical domain entirely, which is the only require-
ment for mathematical covers. If the problem domain is denoted
by Ω, and each mathematical patch by Mi (i¼1, 2, … m, m is the
number of mathematical patches), the relation between them can
be expressed as

ΩD [m
i ¼ 1Mi ð1Þ

Every mathematical patch is cut into several connected regions
by the boundaries and the discontinuous interfaces of the problem
domain. Having been cut, some of these regions are totally con-
tained by the problem domain, while others are outside the pro-
blem domain and to be discarded. Each of the remaining regions is
called a physical patch. Each mathematical patch may contain one
or more physical patches. A mathematical patch is split into more
than one physical patch if and only if it is cut entirely by dis-
continuities. Otherwise, only one physical patch is formed which is
less than or exactly equal to the mathematical patch. A typical
physical patch is denoted by Pj (j¼1, 2, … p, p is the number of
physical patches). The set of all the physical patches is the physical
cover (PC), which covers the problem domain exactly, namely,

Ω¼ [p
j ¼ 1Pj ð2Þ

Because the mathematical patches overlap, the physical pat-
ches also overlap. Thus, each physical patch Pj may contain
boundaries of other physical patches. All the boundaries of other
physical patches inside Pj divide Pj into several connected regions.
Each of these regions is called a manifold element. A manifold
element can be contained by one or more physical patches, which
together decide the approximation of displacement inside the
manifold element. Distinct manifold elements are disjointed, and
all the manifold elements partition the problem domain exactly. A
typical manifold element is denoted as Ek (k¼1,2…e, e is the
number of manifold elements). The relation between manifold
elements and physical domain is expressed as

Ω¼ [e
k ¼ 1Ek ð3Þ

Manifold elements serve as the basic units for integration of
weak form.
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