
Slope limiters for radial basis functions applied to conservation laws
with discontinuous flux function$

Fayssal Benkhaldoun a, A. Halassi b,n, Driss Ouazar c, Mohammed Seaid d, Ahmed Taik b

a LAGA, Université Paris 13 SPC, 99 Av J.B. Clement, 93430 Villetaneuse, France
b LaboMAC & PM, Department Mathematics FSTM, Hassan II University Casablanca, Morocco
c Department of Genie Civil, LASH EMI, Mohammed V University Rabat, Morocco
d School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE, UK

a r t i c l e i n f o

Article history:
Received 25 February 2015
Received in revised form
6 December 2015
Accepted 3 February 2016
Available online 24 February 2016

Keywords:
Conservation laws
Discontinuous flux function
Radial basis functions
Slope limiters
Meshless method
Traffic flow

a b s t r a c t

We present slope limiters in meshless radial basis functions for solving nonlinear equations of con-
servation laws with flux function that depends on discontinuous coefficients. The method is based on the
local collocation formulation and does not require either generation of a grid or evaluation of an integral.
Upwind techniques are used to allocate collocation points within the characteristic solutions and dif-
ferent slope limiter functions are investigated. The main advantages of this approach are neither mesh
generations nor Riemann problem solvers are required during the solution process. Numerical results are
shown for several test examples including models on vehicular traffic and two-phase flows. The main
focus is to examine the performance of the proposed meshless method for shock-capturing property in
conservation laws with discontinuous flux function. The obtained results demonstrate its ability to
capture the main solution features.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear conservation laws with discontinuous flux function
occur in many physical applications, for example in porous media
flows [10], sedimentation phenomena [8], resonant models [12]
and vehicular traffic [18] among others. In general, the problem
statement in this class of applications consists of numerically
solving the Cauchy problem associated with the following scalar
conservation laws:

∂u
∂t

þ ∂
∂x
f kðxÞ;uð Þ ¼ 0; xAR; t40;

uð0; xÞ ¼ u0ðxÞ; xAR; ð1Þ
where uAR is the scalar unknown, the flux function f kðxÞ;uð Þ :
R⟶R is nonlinear and k(x) is a given function that can depend
on time variable as well. We assume that the Jacobian f uðkðxÞ;
uÞ ¼ ∂f kðxÞ;uð Þ=∂u is diagonalizable with real eigenvalues. To
illustrate the numerical techniques discussed in this paper, we

use a multiplicative form of the flux function defined as

f kðxÞ;uð Þ ¼ kðxÞgðuÞ; kðxÞ ¼
kL; if xox0;
kR; if x4x0;

(
ð2Þ

where x0 is the location of the interface, kl and kR are given constants
with kLakR. Note that most practical applications of these problems
cannot be solved analytically and hence require numerical methods
to approximate their solutions. One of the main difficulties in the
analysis of conservation laws (1) and (2) is the correct definition of a
solution. It is well known that after a finite time, the problem (1) and
(2) does not in general possess a continuous solution even if the
initial data u0ðxÞ is sufficiently smooth. Hence a solution of (1) and
(2) has to be understood in the weak sense. Moreover, among the
computational difficulties that arose when approximating solutions
of the problem (1) and (2) are numerical instability, poor shock and
rarefaction resolutions, and even spurious numerical solutions.

Many numerical methods are available in the literature to
solve conservation laws with discontinuous flux function. The
most popular techniques are finite volume schemes which are
based on exact or approximate solver such as Lax-Friedrich,
Godunov and Engquist-Oscher methods among others. In fact,
the Godunov-type methods use approximate Riemann solvers to
compute the numerical flux instead of the exact Riemann sol-
vers. These procedures are mathematically hard to treat and
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computationally demanding, particularly for flux functions
changing the derivative signs in more than one interface or
depending on discontinuous time-dependent coefficients. In
addition, application of the Godunov method to solve con-
servation laws with discontinuous flux function requires a dis-
cretization of the discontinuous coefficients staggered with
respect to that of the solution, compare [28,6] and further details
are therein. In the framework of relaxation approximations of
conservation laws, a class of Monotonic Upstream-Centered
Schemes for Conservation Laws (MUSCL) methods has been
applied in [25] to solve the problem (1) and (2). It has been
shown in this reference that the relaxation system associated
with the problem (1) and (2) regularizes the solution of the
original problem but the numerical diffusion in the presented
results is clearly noticeable.

Mesh-based techniques such as finite difference, finite element
and finite volume methods have beenwidely used for solving partial
differential equations. However, the accuracy of these methods is
affected by the quality of the meshes, stabilization techniques and
solution of Riemann problems, which hinders their applications to
solving real problems with irregular domains and complex Riemann
problems. Note that the introduction of artificial viscosity has been
widely used to stabilize many finite element methods for con-
servation laws whereas the solution of Riemann problems is roughly
approximated in many finite volume methods. Significant develop-
ments in meshless methods for solving linear and nonlinear partial
differential equations have been achieved. For instance, the meshless
local Petrov–Galerkin and local boundary integral equation methods
were studied in [1,2]. These methods basically transformed the
original problem into a local weak formulation and the shape
functions were constructed from using the moving least-squares
approximation to interpolate the solution variables. Meshless Radial
Basis Functions (RBFs) have been subject to several studies and their
applications to solve partial differential equations have also been
covered in the literature. The RBF approximations, particularly the
multiquadric basis functions, were first devised for scattered geo-
graphical data interpolation in [29,19]. A review on the application
of RBF methods for scattered data interpolation can be found in [14].
Theoretical results for RBF have also been presented in [4,21] among
others. These results include solvability, convergence and stability of
the RBF interpolation in a general framework. Application of the RBF
methods to steady and time-dependent partial differential equations
has also been investigated, see for example [11,15]. Recently the RBF
methods have also been used to solve hyperbolic systems of con-
servation laws such as the Euler system for gas dynamics and
shallow water equations in [26,16]. The current paper devises a truly
meshless RBF method for conservation laws with discontinuous flux
function and its application to problems in vehicular traffic and two-
phase flows. In order to reconstruct a numerical scheme that
maintains the high-order accuracy away from discontinuities, while
producing monotone results at discontinuities, we adapt techniques
from slope limiters in mesh-based methods for conservation laws to
the local meshless RBF method. The key idea is to benefit from the
non-oscillatory character of the upwind collocation and to blend it
with a local RBF method. The blending procedure is carried out by
standard slope limiter functions. The results using the proposed RBF
method with slope limiters are presented for several test problems.
To the best of our knowledge, solving conservation laws with dis-
continuous flux function using these numerical tools is reported for
the first time.

The remainder of the paper is organized as follows. In Section 2
we present the meshless radial basis function method for con-
servation laws. For simplicity of presentation we will consider the
discontinuous flux function given by (2), but methods herein
presented extend directly to other general flux functions and are
also applicable to systems of conservation laws. Next, slope

limiters in the framework of radial basis functions are formulated
in Section 3. In Section 4 we extend the meshless radial basis
function method to two-dimensional problems. Finally, Section 5
presents numerical results for various test examples on scalar
conservations appeared in modeling vehicular traffic and two-
phase flow in porous media. Conclusions are drawn in Section 6.

2. Radial basis functions for conservation laws

Let us assume that a nodal distribution of N distinct points xj is
used as a collocation in the computational domain and let wi(t)
denotes the value of a generic function w at the collocation point xi
and time t. The main idea of the interpolation using local RBF is to
interpolate the unknown function wi(t) by the expansion

wiðtÞC
X
jA Ii;m

λjðtÞφ xi�xj
�� ��� �þ XM

k ¼ 1

λkpk xð Þ; ð3Þ

where Ii;m is the local set containing the index i and indices of the
neighboring points to the reference point xi. In (3), pkðxÞ are exactly
the polynomials spanning πM which are polynomials of degree at
most M and satisfying the constraintsX
jA Ii;m

λjpk xj
� �¼ 0; k¼ 1;2;…;M; ð4Þ

where λj's are the unknown coefficients to be calculated, rij ¼
xi�xj
�� �� is the distance between the points x and xj, and φ j xi�xj j

� �
is the radial basis function. In the current study we consider the
infinitely smooth multiquadrics radial basis function defined as

φðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þϵ2r2

p
; ð5Þ

where ϵa0 is the shape parameter controlling the fitting of a
smooth surface to the data. The lack of the mathematical theory
makes it very difficult to choose a suitable value ϵ for the RBF
methods. However, investigations in [14,5] have shown that the
computational accuracy of the radial basis interpolation can be
improved by varying the shape parameter with the selected radial
function. In the present work we used the following selection [9]:

ϵ¼ 0:8
ffiffiffiffiffi
ns

p
dm

; ð6Þ

with ns being the cardinal number of the set Ii;m and dm denotes the
smallest nodal distance in Ii;m. Note that other selections for the shape
constant ϵ and other radial basis functions can be easily incorporated
in our analysis without major conceptual modifications.

The selection of the set Ii;m may depend on the problem under
study and for purpose of this study upwinding techniques are
adopted for the selection of the set Ii;m. Thus, for each collocation
point xi the associated set Ii;m contains the index i and indices of
the m nearest neighboring points to both sides of xi. It is evident
that for this selection the cardinal number of the set Ii;m is given by
ns ¼ 2mþ1. Using this selection of the set Ii;m the expansion
coefficients λiðtÞ in (3) are obtained by solving the following linear
system of ns � ns algebraic equations

B½i�Λ½i� ¼w½i�; ð7Þ
where B½i� is an ns � ns matrix with entries φ jxi�xj j

� �
, Λ½i� and w½i�

are ns-valued vectors with entries λi and wi, respectively. For many
choices of radial basis functions φ, the interpolation matrix B½i� in
(7) is guaranteed to be nonsingular for any set of distinct points and
the invertibility is therefore guaranteed, see for example [19,21].
Notice that adding the polynomial terms to the considered radial
basis interpolation (3) is not generally required. However, this
argument may not be applicable to other radial basis functions.

Partial derivatives of the interpolant (3) may be calculated in a
straightforward manner. For instance, the temporal and spatial
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