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a b s t r a c t

Mathematical formulation and computational implementation of the stochastic spline fictitious
boundary element method (SFBEM) are presented for modal analysis of plane elastic problems with
structural parameters modeled as random fields. Two sets of governing differential equations with
respect to the means and deviations of displacement modes are derived by including the first order terms
of deviations. These equations are in similar forms to those of deterministic plane elastostatic problems,
and can be solved using deterministic elastostatic fundamental solutions, resulting in the means and
covariances of the eigenvalues and mode shapes. For the effective treatment of the domain integrals
involved in the deviation solution, the random fields considered are represented by Karhunen–Loeve
(KL) expansion in conjunction with the Galerkin projection. Numerical examples indicate that the results
of the present method are in good agreement with those from the Monte Carlo simulation (MCS) with
small variations, and the present approach is more efficient than the perturbation stochastic finite ele-
ment method (FEM) with the same KL expansion technique.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Modal analysis of a structure is one of the major issues in
structural design, and is the foundation for dynamic response
analysis of the structure as well. In conventional structural design,
modal analysis is generally based on deterministic structural
models, in which the effects of the inherent randomness in
structural systems have been completely neglected. However, it
has been found that the structural uncertainties have a certain
influence on the modal responses of structures [1–3]. Therefore, it
is more appropriate to take into account these uncertainties at the
modeling level in structural modal analysis.

In the field of computational stochastic mechanics, the per-
turbation method, due to its considerably high efficiency, is the
most commonly used approach, which is mainly applied in the
framework of finite element method (FEM) for its wide utilization
in the deterministic region [4–6]. Due to certain inherent advan-
tages, the boundary element method (BEM) can also be used as an
alternative numerical scheme for stochastic analysis in conjunc-
tion with the perturbation techniques [7,8]. The perturbation
stochastic BEM has been successfully applied in solving stochastic

elastostatic problems [9–11], stochastic elastodynamic problems
[12,13], stochastic wave motion problems [14], vibroacoustic pro-
blems [15], stochastic potential problems [16], stochastic heat
conduction problems [17], and stochastic groundwater flow pro-
blems [18,19], etc. A boundary element-based method is proposed
by Spanos [20] for random vibration problems of continuous
structures, in which the KL expansion is used to express the ran-
dom excitation efficiently.

In recent years, a modified approach to the traditional sto-
chastic BEM, i.e. the stochastic SFBEM, has been developed by the
authors and applied to stochastic elastostatic problems [21,22],
stochastic plate bending problems [23,24], and stochastic fracture
problems [25]. SFBEM was originally proposed for the analysis of
deterministic problems [26], in which nonsingular integral equa-
tions are derived using the fictitious boundary technique, and B-
spline functions are adopted to approximate the unknown ficti-
tious loads with the use of the boundary-segment-least-square
technique for eliminating the boundary residues. SFBEM has been
proved to have high accuracy and efficiency in general.

In this study, the stochastic SFBEM is extended to stochastic
modal analysis of plane elastic problems with random fields. Dif-
ferent from the central difference formulation for approximation
of the derivatives of the random fields [22,24], the KL expansion in
conjunction with the Galerkin techniques [27] is employed in this
paper to represent the random fields in terms of a linear combi-
nation of the orthogonal basis functions modulated with a set of
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uncorrelated random variables, so that the derivatives of the
random fields can be derived analytically and the number of
random variables needed for description of the random fields can
be reduced significantly. The feasibility and effectiveness of the
present approach are validated using several numerical examples.
A good agreement can be observed with the results of MCS, and a
higher efficiency can be obtained as compared with the pertur-
bation stochastic FEM.

2. Stochastic governing differential equations

Without loss of generality, consider the plane stress problem
with varied elasticity modulus Eðx; yÞ and mass density mðx; yÞ. The
governing differential equations for mode shapes in modal ana-
lysis of plane elastic problem can be expressed as [28]
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where μ is the Poisson’s ratio; ðx; yÞ is the Cartesian coordinate of a
point in the plane domain considered; Uðx; yÞ and Vðx; yÞ denote
displacement modes in horizontal and vertical directions respec-
tively; and λ is the dynamic eigenvalue.

Assume Eðx; yÞ is a homogeneous random field, while mðx; yÞ is
a general random field. They can be expressed as

Eðx; yÞ ¼ EEþδEðx; yÞ
mðx; yÞ ¼mEðx; yÞþδmðx; yÞ

9=
; ð2Þ

where EE and δEðx; yÞ are the mean and deviation of Eðx; yÞ,
respectively; and mEðx; yÞ and δmðx; yÞ represent the mean and
deviation of mðx; yÞ, respectively. Note that the mean value EE is a
constant, since Eðx; yÞ is assumed to be a homogeneous
random field.

Due to the random influence of Eðx; yÞ and mðx; yÞ, the dis-
placement modes and stress modes are also random fields, and the
dynamic eigenvalue is a random variable. They can be written as

Uðx; yÞ ¼ UEðx; yÞþδUðx; yÞ
V ðx; yÞ ¼ VEðx; yÞþδVðx; yÞ
σxðx; yÞ ¼ σxEðx; yÞþδσxðx; yÞ
σyðx; yÞ ¼ σyEðx; yÞþδσyðx; yÞ
τxyðx; yÞ ¼ τxyEðx; yÞþδτxyðx; yÞ
λ¼ λEþδλ

9>>>>>>>>>=
>>>>>>>>>;

ð3Þ

where σxðx; yÞ, σyðx; yÞ and τxyðx; yÞ are normal and shear stress
modes, respectively; and ðU ÞE and δðUÞ represent the means and
deviations of the random quantities considered.

Substituting Eqs. (2) and (3) into Eq. (1), and neglecting the
second and higher order terms of the deviations and their deri-
vatives, one can obtain
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Taking the expectances of the terms on both sides of Eq. (4),
one has
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where Flðx; yÞðl ¼ 1; 2Þ can be expressed as

F1ðx; yÞ ¼ λEmEðx; yÞUEðx; yÞ
F2ðx; yÞ ¼ λEmEðx; yÞVEðx; yÞ

9=
; ð6Þ

Substitution of Eqs. (5) and (6) into Eq. (4) yields
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where δFlðx; yÞðl ¼ 1; 2Þ can be expressed as
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Eqs. (5) and (7) are the governing differential equations for the
means and deviations of displacement modes, respectively.
Obviously, if the terms Flðx; yÞðl ¼ 1; 2Þ in Eq. (5) and the terms
δFlðx; yÞðl ¼ 1; 2Þ in Eq. (7) are regarded as equivalent loads, Eqs.
(5) and (7) have the same forms as the governing differential
equations with respect to displacements in elastostatic problems.
Thus, the displacement fundamental solutions corresponding to
elastostatic problems can be employed to calculate the means and
deviations of the displacement modes in stochastic elastodynamic
problems.

3. Stochastic differential relationship between stress and dis-
placement modes

Based on the constitutive law and kinematic relations, the
differential relationship between stress and displacement modes
for plane stress problems can be expressed as [28]
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Substituting Eqs. (2) and (3) into Eq. (9), and neglecting the
second and higher order terms of the deviations and their deri-
vatives, the means and deviations of stress modes can be obtained
respectively as
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