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a b s t r a c t

Using boundary integral equations and isogeometric approach, a shape design sensitivity analysis (DSA)
method is developed for two dimensional elastic structures. In the isogeometric approach, NURBS basis
functions in CAD systems are directly utilized in response analysis, which enables a seamless incor-
poration of exact geometry and higher continuity into computational framework. To enhance the
accuracy of shape design sensitivity, the CAD-based higher-order geometric information such as curva-
ture, normal, and tangential vector is exactly embedded in the sensitivity expressions. In boundary
integral formulation, shape design velocity field is decomposed into normal and tangential components,
which significantly affect the accuracy of shape design sensitivity. Also, the proposed boundary-based
method does not require the tedious design parameterization of internal domain. Through the numerical
examples, the developed shape DSA method turns out to be more accurate than conventional finite
element based one.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Ever since the framework of isogeometric analysis (IGA)
method was established by Hughes et al. [1], the IGA method that
employs the same basis functions as used in the CAD model has
shown many advantages over the standard finite element analysis
(FEA). The geometric approximation which is inherent in the finite
element mesh could end up with accuracy problems in response
analysis and more adversely in design sensitivity analysis. Besides,
the isogeometric method has a major feature such as the CAD
based parameterization of field variables in an isoparametric
manner, which thus requires no further communication with the
CAD systems during mesh refinement process. In applying the IGA
to shape design optimization problems, accurate design sensitivity
analysis (DSA) is essential. Based on the shape DSA theory [2], Cho
and Ha [3] showed the applicability and accuracy of the isogeo-
metric shape DSA method for the displacement and stress mea-
sures. In addition to the benefits of IGA, the isogeometric DSA has
the following advantages: First, it provides more accurate sensi-
tivity of complicated geometries including higher order effects
such as curvature, normal, and tangential vector information. The
NURBS functions of higher continuity offer a much more compact
representation of response and sensitivity of structures than the

standard basis functions do, yielding better accuracy even at the
same polynomial order. Second, it vastly simplifies the design
modification of complicated geometry without communication
with the CAD description. Since the NURBS basic functions are
used in both the isogeometric response and the sensitivity ana-
lyses, design modifications are easily obtainable using the
adjustment of control points which represent the geometric
model. The design velocity field, defined as the mapping rate
between the original and the perturbed domains, plays an
important role in computing the shape design sensitivity coeffi-
cients. The combination of isoparametric mapping and boundary
displacement methods is known to be a natural way to obtain the
design velocity field [4]. When using the conventional FEA, the
high inter-element continuity of design space is not guaranteed
and the geometric information such as curvature, normal, and
tangential vectors are not accurate enough. On the other hand, in
the isogeometric DSA, the sufficient continuity and the accurate
geometric information can be obtained over the whole design
space even at coarse mesh so that more accurate shape sensitivity
can be expected.

The boundary integral equation (BIE) method for potential
problems was developed by Jaswon [5] and Symm [6] as a pio-
neering work and extended to elasticity problems by Cruse [7].
Since then, the BIE method has extended its applications to heat
conduction, acoustic, and crack propagation problems by means of
a powerful and alternative numerical method. However, singu-
larity problems arise due to the singular fundamental solution
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expressed as Green functions. The difficulty of dealing with these
singularities has been a main issue in the application of BIE
method in various engineering problems, which naturally led to
several integration schemes to handle the singular integrals. The
computation of Cauchy Principle Value (CPV) for strong singular
integrals was proposed by Guiggiani and Casalini [8] as a direct
approach and a rigid body method was developed by Brebbia [9]
as an indirect approach. Liu and Rudolphi [10] shows the integral
identities for fundamental solutions without the computation of
CPV. Meanwhile, weakly singular integration can be implemented
based on the transformation method by Telles [11]. Recently, a BIE
method employing the isogeometric approach was developed
together with the collocation method to precisely locate the field
and the source points [12].

The BIE-based shape optimization method has been developed
for several decades. Using the BIE and the adjoint variable method
(AVM) in continuum approach, Choi and Kwak derived shape DSA
methods for the self-adjoint elliptic boundary value problems [13]
and the applications for general stress-constrained problems in
terms of tangential and normal design velocity fields [14]. Xin et al.
[15] derived shape design sensitivity by direct differentiation
method (DDM) for solids undergoing small-strain, small-rotation,
elasto-visco-plastic deformation and carried out shape optimiza-
tion for plate problems. Yamazaki et al. [16] derived stress sensi-
tivity based on the DDM of discrete boundary integral equations
and determined the optimal shape of minimum weight subjected
to stress constraints in three dimensional problems. The BIE-based
DSA method was further applied to the shape optimization for
many engineering problems such as heat conduction [17], acoustic
problems [18], and so on. Also, an extension to isogeometric shape
optimization was performed for elastic problems [19]. However,
the shape sensitivity equation was derived in discrete form and
did not include any discussions and verification of the derived
shape sensitivity in that literature.

This paper is organized as follows; in Section 2, we describe the
construction of NURBS basis functions, which may have up to
(p�1) continuous derivatives across element boundaries where p
is the order of underlying polynomial. We explain the isogeo-
metric BIE method based on the NURBS. In Section 3, we derive
the isogeometric BIE shape design sensitivity, where the geometric
effects seem to have profound effects on the shape design sensi-
tivity. In Section 4, demonstrative numerical examples are pre-
sented to verify the accuracy of isogeometric sensitivity by com-
paring with the exact solution of partial differential equation or
the conventional BIEM solution. Finally, we draw conclusions,
which present the superior points of proposed isogeometric shape
DSA method.

2. Isogeometric boundary integral equation

2.1. NURBS basis function

In the IGA, the solution space is represented in terms of the
same basis functions as used in describing the geometry. The IGA
has several advantages over the conventional FEA: geometric
exactness and simple refinements due to the use of NURBS basis
functions which are based on B-splines. Consider a set of knots Ξ
in one-dimensional parametric space.

Ξ¼ ξ1; ξ2;⋯; ξnþpþ1

n o
; ð1Þ

where p and n are the order of basis function and the number of
control points, respectively. The B-spline basis functions are

defined, recursively, as

N0
i ðξÞ ¼

1 if ξirξoξiþ1

0 otherwise
; ðp¼ 0Þ

(
ð2Þ

and

Np
i ðξÞ ¼

ξ�ξi
ξiþp�ξi

Np�1
i ðξÞþ ξiþpþ1�ξ

ξiþpþ1�ξiþ1
Np�1

iþ1 ðξÞ; ðp¼ 1;2;3;…Þ:

ð3Þ
Using the B-spline basis function Np

i ðξÞ and the corresponding
weight wi, a NURBS basis function Rp

i ðξÞ is defined as

Rp
i ðξÞ ¼

Np
i ðξÞwiPn

j ¼ 1
Np

j ðξÞwj

: ð4Þ

Generally, the isogeometric approach using higher order basis
functions offers higher regularity than the conventional FEA does.
For a given n pairs of p-th order NURBS basis function Rp

i ðξÞ and the
corresponding control point Bi, a NURBS curve C is obtained by

CðξÞ ¼
Xn
i ¼ 1

Rp
i ðξÞBi: ð5Þ

For the details of NURBS geometry, interested readers may
consult Rogers [20], Piegl and Tiller [21]. The constructed NURBS
basis functions possess the property of affine covariance and
(p�1) continuous differentiability. If the knots are repeated
k-times, the continuity of NURBS basis functions decreases by k
as well.

2.2. Boundary integral equation for plane elasticity

Consider an open domain Ω bounded by a closed surface Γ
which is sufficiently smooth and composed of two disjointed parts
as Γ ¼ΓD [ ΓN , where ΓD and ΓN are the displacement and
traction boundaries, respectively. n is an outward unit vector that
is normal to the boundary Γ and b is a body force intensity (Fig. 1).

For a generic point x in the domain, the governing equation for
plane elasticity is given by

σij;jþbi ¼ 0; xAΩ; ð6Þ
with the following boundary conditions

ui ¼ ui; xAΓD ð7Þ
and

ti ¼ σijnj ¼ ti; xAΓN ; ð8Þ
where ui and ti are the prescribed displacement and traction,
respectively. For a unit concentrated load at a source point x̂, the
arbitrary function vi should satisfy the following.

σij;jðvÞ ¼ �δðx� x̂Þei; ð9Þ

vi ¼ Uijej; ð10Þ
and

σijðvÞnj ¼ Tijej; ð11Þ
where ei is a unit vector. The fundamental solutions of two-
dimensional problem for a field point x are given by

Uij x; x̂
� �¼ 1

8πμ 1�νð Þ 3�4νð Þln 1
r
δijþr;ir;j

� �
ð12Þ

and

Tij x; x̂
� �¼ � 1

4π 1�νð Þr
∂r
∂n

1�2νð Þδijþ2r;ir;j
� �þ 1�2νð Þ nir;j�njr;i

� �� �
;

ð13Þ
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