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a b s t r a c t

In this paper, based on the numerical investigation of singular integrals over narrow strip boundary
elements stemming from BEM analysis of thin and slender structures with different numbers of Gauss
points, an efficient method is proposed for evaluating the narrow strip singular boundary integrals using
an adaptive unequal interval element-subdivision method in the intrinsic parameter plane. In this
method, the size of the sub-element closest to the singular point is determined first in terms of the
orders of the shape functions along two intrinsic coordinate directions. Then, the sizes of other sub-
elements are computed by employing a criterion proposed by Gao and Davies [1,2] for evaluating nearly
singular integrals in terms of an allowed number of Gauss points and the distance from the source point
to the sub-element. The features of the proposed method are that the computational accuracy of various
orders of singular integrals is controlled by the upper bound of the error of Gauss quadrature, rather than
through artificially giving the size of the sub-elements and number of Gauss points, and because of using
the unequal interval element-subdivision method, the number of required sub-elements is not large even
for an element with high aspect ratio, usually less than 10 for a plate with aspect ratio of 100:1. A number
of numerical examples for plates and shells with different aspect ratios are analyzed for various orders of
integrals to demonstrate the efficiency of the proposed method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled structures, such as plates, shells, and coatings, are
commonly used structural members in engineering. For these
structures, because the thickness is much smaller than the trans-
versal size, it is a challenging task to carry out the thermal and
mechanical analysis of such structures using a numerical method.
When using the finite element method (FEM) to analyze this type
of problems, usually there are two discretization schemes. One is
to use brick elements to accurately model the thin walled struc-
tures. The fatal problem occurring in this scheme is that huge
number of elements may be required because the element size
should be in the same order as the thickness of the plate or shell.
The second scheme, which is frequently used in FEM, is to use
simplified element types to model the thin structure, for example,
to use the plate or shell elements [3–6]. The drawback of this
scheme is that the interaction mechanism between the plate and

the out-plane media cannot be accurately reflected, and this may
limit the use of FEM to solve composite structural problems with
thin-walled components.

The boundary element method (BEM) has distinct advantage
over FEM in the analysis of thin-walled structural problems, since
only the surface of the structure needs to be discretized into
boundary elements and no simplifying assumptions are imposed
[7]. In addition, the basic physical quantities obtained using BEM
are displacements and tractions on the surface. In view of the fact
that the normal and tangential tractions on the surface can
directly reflect the strength of the tensile and shear forces, it can
be seen that BEM is very effective to perform the failure analysis of
coating-like structures. However, when using BEM to solve thin-
plate-like problems, the boundary element discretization accord-
ing to the size of the surface usually results in the presence of
narrow strip elements with high aspect ratio on the flanks of the
plate [7–9]. As analyzed in Section 3, to achieve a satisfactory
integration result over these elements, the required number of
Gauss points exceeds far what is provided in a conventional BEM
code [2]. This is why many researchers often obtain incorrect
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computational results when performing elasticity analysis of very
thin plates using BEM. Therefore, in the simulation of thin-walled
structures using BEM, apart from the need of treating nearly sin-
gular integrals [9–11] when an element under integration is
located on the surface opposite the source point, a special inte-
gration scheme is also needed for treating the singular integrals
over the flank elements when the source point is located on these
elements.

For the evaluation of the singular and nearly singular integrals
over surfaces of thin-walled structures, Sladek and Tanaka pre-
sented a regularization approach in [12] and gave a comprehensive
review in [13]. Regarding the issue of evaluating the singular inte-
grals over the narrow strip boundary elements, we made a detailed
numerical investigation for various aspect ratio cases using different
numbers of Gauss points and found that to achieve an acceptable
integration accuracy, many Gauss points are required along the long
intrinsic coordinate direction of the element, usually more than 50
(the details will be reported in Section 3 of this paper). However,
when developing a BEM code, a limited number of Gauss points is
allowed, usually less than 10. This is why people cannot obtain
correct results when computing a super thin plate using the con-
ventional BEM codes developed based on the treatment of singular
integrals over regular aspect ratio elements by triangulation tech-
nique [2] or other direct methods [14–17]. Unfortunately, very few
people realized this phenomenon and paid attention to research
this problem. This paper is an attempt to study this issue deeply.
Firstly, a numerical investigation is performed in Section 3 about
the computational accuracy of various orders of singular boundary
integrals with respect to different aspect ratio elements, in the
interest of finding problems causing the incorrect results using
conventional BEM. Then, an element-subdivision method is pro-
posed in Section 4 based on a criterion proposed by Gao and Davies
[1,2] for evaluating nearly singular integrals in terms of an allowed
number of Gauss points and the distance from the source point to
the sub-element. In the proposed method, two new techniques are
presented for the first time to determine the sizes of sub-elements.
Some numerical examples for thin plates and shells are analyzed in
Section 5 to demonstrate the efficiency of the proposed method.

2. Singular boundary integrals in BEM analysis

In three-dimensional elasticity problems, the boundary integral
equations can be expressed as [2]

cui Pð Þ ¼
Z
Γ
Uij P;Qð Þtj Qð ÞdΓ Qð Þ�

Z
Γ
Tij P;Qð Þuj Qð ÞdΓ Qð Þ ð1Þ

where c¼ 1=2 for smooth boundary points and c¼ 1 for interior
points; P and Q represent the source and field points, respectively; uj

and tj are displacements and tractions defined on the boundary Γ;

Uij and Tij are the Kelvin's fundamental solutions for displacements
and tractions, which can be expressed as

Uij ¼
1

16πð1�νÞμ r
½ð3�4νÞδijþr;ir;j� ð2Þ

Tij ¼
�1

8πð1�νÞr2
∂r
∂n

½ð1�2νÞδijþ3r;ir;j�þð1�2νÞðnir;j�njr;iÞ
� �

ð3Þ

in which, μ is the shear modulus, ν is Poisson's ratio, r is the distance
between the source point and field point.

To evaluate the boundary integrals included in Eq. (1), the
boundary Γ of the problem is discretized into a series of boundary
elements [2] and integrations are performed over these elements.
The discretized form of Eq. (1) can be written as

cui Pð Þ ¼
Xne
e ¼ 1

Xm
α ¼ 1

tαj Qα� �Z
Sε
Uij P;Qð ÞNα Qð ÞdΓ Qð Þ

( )

�
Xne
e ¼ 1

Xm
α ¼ 1

uαj Qα� �Z
Sε
Tij P;Qð ÞNα Qð ÞdΓ Qð Þ

( )
ð4Þ

in which, ne is the number of elements, m is the number of ele-
ment nodes, Nα is the shape function of the α-th element node.

Fig. 1 shows three types of frequently used surface boundary
elements, i.e., 4-noded linear, 8-noded quadratic and 16-noded
cubic elements. To match the 8-noded and 16-noded surface ele-
ments, two new elements, i.e. 6-noded and 8-noded elements, are
derived for the flanks of a thin plate based on the Lagrange
interpolation formulation, which are shown in Fig. 2. The shape
functions for the first two types of elements in Fig. 1 can be found
in [2] and those for remaining elements are listed in the Appendix
of this paper. Our computational experience shows that in the
analysis of a thin plate, the upper and lower surfaces are dis-
cretized using the 8-noded or 16-noded elements, while the flanks
are narrow strip shaped and discretized using 6-noded or 8-noded
strip elements as shown in Fig. 2. The 4-noded element as shown
in Fig. 1(a) cannot achieve a stable result.

For the case that the source point is not located in the element
under integration, standard Gaussian quadrature can be used to
evaluate the boundary integrals in Eq. (1). However, when the
source point is located on the element under integration, the
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Fig. 1. Frequently used surface elements: (a) 4-noded linear; (b) 8-noded quadratic; (c) 16-noded cubic elements.

21 5

64 3

41 3

75 8

2

6

Fig. 2. Flank elements: (a) 6-noded element; (b) 8-noded element.
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