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a b s t r a c t

This work outlines the use of a black-box fast multipole method to accelerate the far-field computations
in an isogeometric boundary element method. The present approach makes use of T-splines to discretise
both the geometry and analysis fields allowing a direct integration of CAD and analysis technologies. A
black-box fast multipole method of O(N) complexity is adopted that minimises refactoring of existing
boundary element codes and facilitates the use of different kernels. This paper outlines an algorithm for
implementing the open-source black-box fast multipole method BBFMM3D1 within an existing isogeo-
metric boundary element solver, but the approach is general in nature and can be applied to any
boundary element surface discretisation. The O(N) behaviour of the approach is validated and compared
against a standard direct solver. Finally, the ability to model large models of arbitrary geometric com-
plexity directly from CAD models is demonstrated for potential problems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the majority of modern industrial engineering and design
workflows Computer Aided Design (CAD) and analysis software
play a crucial role in reducing the overall design lifecycle. The
iterative nature of design requires tight integration of CAD and
analysis software, but modern workflows are inhibited by cum-
bersome fixing and defeaturing algorithms that must be used in
the transition from CAD models to analysis models. The disparity
between CAD and analysis is one of the biggest challenges facing
engineering design which has inspired research into new dis-
cretisation approaches that unify or greatly ease the transition
from CAD to analysis and vice versa.

One of the most active research areas that aims to address the
disparity between CAD and analysis is the field of isogeometric
analysis (IGA) [28] that uses spline-based discretisations generated
by CAD software as a basis for analysis thus providing a framework
that unifies CAD and analysis. Since the seminal paper of [28], the
concept has expanded rapidly into several applications including
acoustics [47,38], vibrations [15], elasticity [1,42], electromagnetics
[49,10] and fluid flow [3,17,26]. Early work on IGA has focussed on
the use of Non-Uniform Rational B-Splines (NURBS) [39] due to
their popularity within modern commercial CAD software, but
limitations stemming from their tensor-product nature have

prompted research into alternative CAD discretisations including
subdivision surfaces [13,14], PHT splines [35,50], LR B-splines [29],
T-splines [2] and THCCS [52]. From a commercial perspective, the
two technologies which have made the largest impact include
subdivision surfaces and T-splines. Subdivision surfaces are ubi-
quitous within the computer animation industry but at present,
they have yet to penetrate the CAD software market. T-splines offer
a promising route to overcome the tensor product nature of NURBS
while also providing backwards compatibility with existing NURBS
technology. From an analysis perspective, T-splines have opened up
interesting routes for integrated design and analysis technologies
through properties such as water-tight geometries and local
refinement algorithms. T-splines were first used in an analysis
context in [2] and subsequently analysis-suitable T-splines [32,9]
were proposed that satisfy important analysis properties while
retaining flexible geometry and modification algorithms. Further
research includes efficient evaluation of T-spline basis functions
through Bézier extraction [43].

A popular approach in CAD is to represent geometry in terms of
a surface or Boundary-Representation (B-Rep) through appro-
priate geometry discretisations such as connected NURBS patches,
T-spline or subdivision surfaces. Such surface discretisations are
insufficient for volumetric analysis methods such as the finite
element method but provide the necessary data structures for
analysis methods based on surfaces such as shell and boundary
integral formulations. The limitations of boundary integral
approaches are well-known, but assuming the use of such an
approach is valid, they are found to be a particularly attractive

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2016.03.004
0955-7997/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: robert.simpson.2@glasgow.ac.uk (R.N. Simpson).
1 https://github.com/ruoxi-wang/BBFMM3D

Engineering Analysis with Boundary Elements 66 (2016) 168–182

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2016.03.004
http://dx.doi.org/10.1016/j.enganabound.2016.03.004
http://dx.doi.org/10.1016/j.enganabound.2016.03.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.03.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2016.03.004&domain=pdf
mailto:robert.simpson.2@glasgow.ac.uk
https://github.com/ruoxi-wang/BBFMM3D
http://dx.doi.org/10.1016/j.enganabound.2016.03.004


approach for integrated design and analysis. By adopting a com-
mon discretisation for both geometry and analysis, isogeometric
boundary element methods completely circumvent meshing pro-
cedures and eliminate geometry error promoting design software
that truly integrates CAD and analysis. The idea has been explored
in the context of several applications including elastostatics
[46,45,51], shape optimisation [7,19,31] acoustics [47,37,38] and
underground excavations [6].

A well-known feature of the BEM approach is the debilitating O
(N2) asymptotic behaviour for matrix assembly and O(N3) beha-
viour of direct solvers that eventually dominates for large pro-
blems. For practical engineering problems this manifests itself as
large runtimes and heavy memory demands that often completely
prohibit the use of direct solvers. Instead, matrix compression
techniques which reduce the overall solver complexity to OðN log
NÞ or O(N) must be used. At present, the most popular techniques
include: the Fast Multipole Method (FMM) [21,11,12,36] and
Hierarchical (H-) matrices [24,22,23] which make use of low-rank
compression methods such as Adaptive Cross Approximation
(ACA) [5,30]. These techniques are all based on the same funda-
mental concept of approximating the smooth nature of the kernel
for far-field interactions through efficient hierarchical data struc-
tures that allow for fast matrix–vector computations within an
iterative solver. More recent research has focussed on the devel-
opment of fast direct solvers (e.g. [20,8]) that have shown
advantageous properties over iterative techniques and offer a
promising direction for future BEM solvers.

From an implementation standpoint, preference is often given
to ACA and H-matrix methods which perform matrix compression
in a purely algebraic manner, in contrast to the majority of FMM
implementations which require extensive changes to BEM soft-
ware. However, there exist black-box FMM implementations that
overcome these limitations [53,18,33] opening up efficient O(N)
FMM algorithms to BEM software. The present paper is based on
such techniques.

Previous work on accelerating isogeometric BEM computations
includes FMM compression for 2D Laplace problems [48], H-
matrices to accelerate 2D and 3D elasticity applications [34] and
a comparative study of Wavelet, FMM and ACA compression
defined over parametric surfaces [25]. All of these studies have
made use of tensor product parameterisations in the form of
NURBS or rational Bézier surfaces.

The present paper outlines an approach for accelerating BEM
computations in the framework of isogeometric analysis by
employing a black-box FMM and adopting T-splines to discretise
both the surface geometry and analysis fields. A collocation approach
is chosen in the present study, but the techniques are applicable also
to Galerkin and Nyström methods. Through the use of a black box
FMM algorithm, the changes required to any existing BEM code are
kept to a minimum. The use of T-splines allows direct integration of
computational geometry and analysis technology while overcoming
the inherent limitations of tensor product surfaces. The combination
of these technologies offers a significant step forward towards inte-
grated design and analysis for industrial applications.

The paper is organised as follows: a brief overview of the black-
box FMM algorithm is given highlighting common FMM termi-
nology and its relation to traditional BEM notation; the boundary
element discretisation procedure that allows a system of equations
to be formed is stated; an overview of T-spline discretisation
technology is described; the algorithm for computing the matrix–
vector product through the black-box FMM for fast BEM solve
times and reduced memory consumption is detailed and finally,
numerical examples are given to verify the implementation and
assess its asymptotic behaviour against a standard direct solver for
potential problems. All algorithms and numerical examples in the
present work are based on three-dimensional problems.

2. Fast multipole methods

Fast multipole methods were originally developed to overcome
the intractable computational complexity of N-body problems
when solved by direct means. Such problems can be expressed as

f ðxiÞ ¼
XNs

j ¼ 1

Kðxi; yjÞσj; i¼ 1;2;…;Nf ð1Þ

where f ðxiÞ is the desired force or field, Kðx; yÞ is a problem specific
kernel, fσjgNs

j ¼ 1 is a set of charges, fxigNf

i ¼ 1 a set of field points and
fyjgNs

j ¼ 1 a set of source points. In the case Ns ¼Nf ¼N and (1) is
applied directly, the computation time scales as O(N2) which
necessitates acceleration methods for large problems. Early work
on the FMM applied to three-dimensional problems formulated
methods that scale as OðN log NÞ with subsequent improvements
in algorithms achieving scaling of O(N). Many variants of the FMM
exist, but all are based on the same fundamental algorithm:

1. Prescribed tolerance: a tolerance ϵ is prescribed to determine the
number of terms retained in far-field expansions.

2. Subdivision of space: a hierarchical subdivision of space is con-
structed consisting of m levels indexed by k¼ 0;1;…;m (see
Fig. 1 for an illustration of increasing levels of hierarchical
subdivision). Octree subdivision is commonly used for three-
dimensional problems. For each level of the octree, a set of cells

fYk
ag

nk
cell

a ¼ 1 is defined. Source and field points are assigned to cells
in every level.

3. Upwards pass: far-field expansions are computed for each cell at
the lowest levelm of the tree. Far field expansions for cells in level
m�1 and higher are computed from expansions in lower levels
through a Moment-to-Moment (M2M) translation operator.

4. Downwards pass: working down the tree, local expansions are
formed for each cell Yk

a. These are calculated through a Moment-
to-Local (M2L) operator for cells in the interaction list2 of Yk

a and a
Local-to-Local (L2L) operator applied to the parent cell of Yk

a.
5. Evaluation: working at the lowest level of the tree, the FMM

approximation of f ðxiÞ is computed by finding the cell at the lowest
level of the tree which contains xi. The local expansion of this cell
is used to compute the far-field approximation with the near-field
computed directly by summing over all near-neighbours.

2.1. Black-box fast multipole method

In the case of the black-box algorithm of [18], far-field expan-
sions are based on Chebyshev interpolation and M2L operators are
constructed through reduced rank operators calculated by Singular
Value Decomposition (SVD). A particularly beneficial feature of
this approach is its ability to handle arbitrary kernels in contrast to
conventional FMM implementations that often require significant
code rewrites for alternative kernels. This justifies the use of such
an approach in the present study.

To accelerate N-body computations using the black-box code of
[18], the following specific inputs are required:

1. Tolerance parameters: consisting of the target precision ϵ used to
compute SVD cutoff parameters and nch, the number of Che-
byshev nodes used to interpolate in each coordinate direction.

2. Hierarchical subdivision parameters: comprising m, the number
of levels in the tree hierarchy and L, the side-length of the
smallest cube enclosing the domain.

3. Kernel, Kðx; yÞ: prescribed either analytically or numerically.

2 See [4] for a thorough definition of FMM terms including well-separated,
near-neighbours and the interaction list of a cell.
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