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a b s t r a c t

The scaled boundary finite element method (SBFEM) is a fundamental-solution-less boundary element
method, which leads to semi-analytical solutions for stress fields. As only the boundary is discretized, the
spatial dimension is reduced by one. In this paper, the SBFEM based polygon elements are utilized to
improve the accuracy and efficiency of stress analysis. It retains the attractive feature of the SBFEM in
solving problems with unbounded media and singularities. In addition, polygon elements are more
flexible in meshing and mesh transition. Various measures which help improving accuracy or efficiency
of the stress analysis, i.e. refining polygon mesh, nodal enrichment, appropriate placing of the scaling
center, merging polygon elements and NURBS enhanced curved boundaries are discussed and compared.
As a result, further insight into the refinement and improvement strategies for stress analysis is provided.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As a versatile and robust numerical analysis method with
powerful capability for simulating a large variety of problems with
complex structural geometrics, complicated material properties,
the finite element method (FEM) has found widespread applica-
tion in engineering practice. However, the standard FEM yields
relatively poor results when applied to problems containing
curved boundaries, irregular inclusions or openings, problems
associated with singular nature of the solution, such as reentrant
corners and problems with unbounded domain subjected to forces
which are not self-equilibrating. Besides, it may be time consum-
ing in generating high quality meshes and performing mesh
refinement to fit the exact geometry. In order to circumvent these
difficulties, numerous methods have been developed in the lit-
erature, such as:

1. Improving the accuracy of geometric fitting by introducing p-
version of FEM [1] and hp finite element [2]. As illustrated in [3],
a meaningful high-order accurate solution in the presence of
curved boundaries can only be obtained if the corresponding
high-order approximation of the geometry is employed.

2. The use of polygon based hybrid stress approach [4], hybrid
Trefftz formulation [5] to solve problems containing irregular

inclusion or microstructure. It allows high flexibility in meshing
and mesh transition.

3. Extended finite element which is suitable for modeling crack
growth with minimal work of remeshing. However, it needs
additional enrichment functions [6], which may compensate the
advantages of reducing the computational effort.

In the late 1990s, a novel semi-analytical approach, the scaled
boundary finite-element method (SBFEM) was proposed by Wolf
and Song [7]. The scaled boundary finite-element method is a
fundamental-solution-less boundary element method [8]. Only the
boundary of the domain needs to be discretized resulting in the
reduction of the spatial dimension by one. Moreover, singular
stress field at the crack tip and bi-material interfaces are expressed
semi-analytically without further adaptive refinement of the
mesh. For the problem of complex geometry and complicated
material properties, the domain are discretized into polygonal
elements conveniently through Delaunay triangulation or Voronoi
diagrams. Hence, it is widely applied to fracture mechanics [9–11].
As to the unbounded domain problems, SBFEM has been suc-
cessfully applied to dynamic fluid-structure interaction [12] and
soil-structure interaction analyses [13,14]. In addition, it also
achieved great success in the solution of liquid sloshing [15], heat
transfer problems [16] and electromagnetic problems [17].

There are numerous strategies to improve accuracy and effi-
ciency of the stress analysis in the framework of SBFEM. Refine-
ment of polygon mesh [18], h-hierarchical adaptive procedure [19]
and appropriate placing scaling center to express stress singularity
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[20] are the most commonly used strategies. Moreover, the inte-
gration of SBFEM and the non-uniform rational B-Splines (NURBS)
is a promising alternative. Employing NURBS as basis functions to
construct exact geometric model can be traced back to isogeo-
metric analysis (IGA) presented by Hughes [21]. In the subsequent
field variable analysis, the basis is refined and/or its order elevated,
while exact geometry is maintained at all levels of refinement. The
IGA has motivated the development of a novel numerical analysis
method and has successfully applied to various fields, such as solid
mechanics, fluid mechanics and fluid-structure interaction, etc
[22]. The SBIGA exploits the advantages of SBFEM and the IGA [23],
higher convergence rate and higher efficiency are achieved in
comparison with the standard SBFEM. In [24] SBIGA is applied to
carry out time-domain dynamic analysis of dam-reservoir-
foundation system taking into consideration the effect of water
compressibility, the reservoir bottom absorption and soil-structure
interaction of the unbounded foundation. In [25], the SBFEM
enhanced IGA is further extended to deal with the problems of
linear elastic fracture mechanics. It is also worth to note, in [26,27]
NURBS enhanced finite element method (NEFEM) has been
developed, which allows integration of the NURBS boundary
representation of the domain and the FEM. However, for practical
engineering implementation, inhomogeneity of the domain are
often encountered, such as internal inclusions, gaps or openings,
and various material properties in different parts of the domain,
sophisticated treatment, e.g., trimming [28] and splicing are nee-
ded, sometimes refinement may result in superfluous control
points. Although T-spline [29] is a good way to obtain a gap-free
connection between multiple NURBS surfaces and to perform local
refinement efficiently, the construction of the T-spline basis
function for the whole solid structure with complex geometry and
constituents is still a challenge work.

In this paper, several advanced techniques, including the
SBFEM, the NURBS enhanced SBFEM and the polygon elements are
jointly used to improve the stress analysis. We define it as the
scaled boundary polygon element (SBP) method. Various strate-
gies which help to enhance the accuracy and efficiency of the of
stress analysis, such as mesh refinement, nodal enrichment,
appropriate placing of the scaling centers, merging excessive
polygon elements, NURBS enhanced SBFE model for curved
boundary etc. are extensively studied through numerical examples
where emphasis is placed on the convergence rate and the com-
putational effort, or the number of nodes used. Based on these
studies, further insight in refinement and improvement strategies
for stress analysis can be provided.

This paper is organized as follows. In Section 2, an overview of
the SBFEM, generation of polygon mesh and the basics of NURBS is
presented. In Section 3, NURBS enhanced SBP and subdivision
strategies are proposed. Section 4 devoted to study general
approaches in improving the accuracy of SBP, including refining
polygon mesh, inserting additional nodes on the sides of polygons
and appropriately placing the scaling center etc. Numerical
examples are provided to validate the rate of convergence for
various cases. In Section 5, other strategies are explored to solve
typical problems arise in engineering practice. These may be the
case containing openings inside the domain with curved bound-
ary, the case containing reentrant corners, the case containing
unbounded domain, the case containing edge notch etc. In all the
cases, standard SBP are not effective. Measures employing NURBS
enhanced SBP and merging polygon elements are recommended.
Numerical examples validate the proposed approaches. Finally, in
Section 6 the main conclusions are summarized.

2. Summary of SBFEM, polygon mesh and basic properties of
NURBS

2.1. Summary of SBFEM

The transformation from Cartesian coordinates x; yð Þ to the
scaled boundary coordinates ξ;η

� �
is the basic concept of scaled

boundary finite element method [8]:

x ξ;η
� �¼ ξx η

� �þx0 ¼ ξð N η
� �� �

xf g�x0Þþx0
y ξ;η
� �¼ ξy η

� �þy0 ¼ ξð N η
� �� �

y
� ��y0Þþy0

(
ð1Þ

where x0; y0
� �

is the coordinates of the scaling center. As shown in
Fig. 1, the dimensionless radial coordinate ξ is pointing from the
scaling center O to a point on the boundary with ξ¼ 0 at O and
ξ¼ 1 on the boundary; N η

� �� �
denotes the shape functions for

boundary discretization.
Thus the Jacobian matrix and partial derivatives with respect to

transformed coordinates ξ;η
� �

are expressed as

Ĵ
h i

¼
x;ξ y;ξ
x;η y;η

" #
¼

x η
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y η
� �

ξx η
� �

;η ξy η
� �

;η

" #
ð2Þ

∂=∂x ∂=∂y
n oT
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h i�1

∂=∂ξ ∂=∂η
n o

ð3Þ

Substituting Eq. (3) into the linear differential operator

L½ � ¼
∂=∂x 0 ∂=∂y
0 ∂=∂y ∂=∂x

" #T

¼ b1
h i

∂=∂ξþ1
ξ

b2
h i

∂=∂η ð4Þ
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¼ 1
Jj j
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and

b2
h i

¼ 1
Jj j

�y η
� �

0 x η
� �

0 x η
� � �y η

� �
" #T

. J½ � is the Jacobian matrix on the

boundary and equals

J½ � ¼
1 0
0 1=ξ

" #
Ĵ
h i

ð5Þ

On the other hand, the displacement at a point ξ;η
� �

is inter-
polated from the displacement function u ξ

� �� �
on the radial lines

uh ξ;η
� �� �¼ N η

� �� �
u ξ
� �� � ð6Þ

Substituting Eqs. (4) and (6) into geometric equation
εf g ¼ L½ �T uf g, the strain vector takes the form of

εf g ¼ b1
h i

∂=∂ξþ1
ξ

b2
h i

∂=∂η
� 	

N½ � u ξ
� �� �¼ B1

h i
u ξ
� �� �

;ξþ
1
ξ

B2
h i

u ξ
� �� �

ð7Þ
with B1

h i
¼ b1
h i

N½ � and B2
h i

¼ b2
h i

N½ �;η.

Substituting Eq. (7) and physical equations σf g ¼ D½ � εf g into
equilibrium equations L½ �T σf g ¼ 0. And employing virtual work
principle

R
Vδ εf gT σf gdV ¼ R 1

0 δ u ξ
� �� �T

;ξ E0
h i

ξ u ξ
� �� �

;ξþ E1
h iT

u ξ
� �� �� 	

dξ

þ
Z 1

0
δ u ξ

� �� �T E1
h i

u ξ
� �� �

;ξþ E2
h i

u ξ
� �� �

=ξ

 �

dξ¼ 0 ð8Þ

where E0
h i

, E1
h i

and E2
h i

are coefficient matrixes related to the
geometry and material properties of the medium

E0
h i

¼
Z þ1

�1
B1 η

� �h iT
D½ � B1 η

� �h i
J η
� �� �

dη

E1
h i

¼
Z þ1

�1
B2 η

� �h iT
D½ � B1 η

� �h i
J η
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dη
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