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a b s t r a c t

In this paper, the localized radial basis function collocation method (LRBFCM) is combined with the
partial upwind scheme for solving convection-dominated fluid flow problems. The localization technique
adopted in LRBFCM has shown to be effective in avoiding the well known ill-conditioning problem of
traditional meshless collocation method with globally defined radial basis functions (RBFs). For con-
vection–diffusion problems with dominated convection, stiffness in the form of boundary/interior layers
and shock waves emerge as convection overwhelms diffusion. We show in this paper that these kinds of
stiff problems can be well tackled by combining the LRBFCM with partial upwind scheme. For verifica-
tion, several numerical examples are given to demonstrate that this scheme improves the LRBFCM in
providing stable, accurate, and oscillation-free solutions to one- and two-dimensional Burgers' equations
with shock waves and singular perturbation problems with turning points and boundary layers.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In modelling physical convection–diffusion phenomena of heat
diffusion and particle/fluid flows, the following two typical form of
partial differential equations (PDEs) are commonly used:

∂u
∂t

�α1Δuþβ1 �∇u¼ f 1; ð1Þ

with given initial and boundary conditions for evolutionary con-
vection–diffusion problems; and

�α2Δuþβ2 �∇u¼ f 2; ð2Þ
with given boundary condition for steady convection–diffusion
problems. Here, α1, α2, β1 ¼ ðβð1Þ

1 ;βð1Þ
2 ;…;βð1Þ

N Þ and β2 ¼ ðβð2Þ
1 ;βð2Þ

2 ;…
;βð2Þ

N Þ denote the diffusion and convection coefficients and f1, f2 are
source terms.

With the rapid advancement of computer technology, numer-
ical methods for simulating real physical phenomena through
solving PDEs are vastly developed and analyzed. Among these the
traditional finite difference method (FDM), finite element method
(FEM), and finite volume method (FVM) are most commonly uti-
lized. Due to the requirement of generating grids/meshes in these
methods, these traditional methods are difficult to solve high-

dimensional and complex geometrical problems. The development
of meshless methods which require only arbitrarily distributed set
of nodes has drawn the attention of many researchers [1,2].
Among these meshless methods, the radial basis function collo-
cation method (RBFCM) has been vastly applied to solve various
kinds of physical problems [3–6] with theoretical proofs on sol-
vability and convergence presented in [7–9]. Since most of the
radial basis functions used in RBFCM are continuously differenti-
able smooth functions, the method is known as Global Radial Basis
Functions Collocation Method (GRBFCM). In GRBFCM, the resul-
tant matrix is constructed by taking direct collocation of nodes in
the domain and on the boundary. This makes the GRBFCM one of
the simplest numerical methods but then the solution is obtained
from solving a dense, and hence ill-conditioned, collocation
matrix. This limits the applicability of the GRBFCM to solve large
scale problems. In the past, various techniques such as Wendland's
Compactly Supported RBF [10], preconditioning technique by Ling
and Kansa [11], adaptive greedy algorithm by Ling and Schaback
[12] and domain decomposition method by Li and Hon [13] have
been proposed to tackle this ill-conditioning problem.

More recently, the GRBFCM has been localized to get Local
Radial Basis Function Collocation Method (LRBFCM) [14,15], whose
main idea is to apply collocation separately on each overlapping
sub-domain of the whole domain. This localization dramatically
reduces the denseness of the resultant collocation matrix but at
the expense of solving many small sub-matrices [14]. The LRBFCM
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not only keeps the meshless and superior accuracy advantages of
GRBFCM, but also is less sensitive to the choice of shape parameter
and perturbation values [16]. The optimal choice of shape para-
meter for multiquadric and Gaussian type RBFs has long been an
open problem in the development of RBFCM. This allows the
LRBFCM the capability to solve many complex physical problems
such as phase-change, casting, Navier–Stokes equations and tur-
bulent flow [17,18] with complexly shaped domains [19].

For convection–diffusion equations, it is well known that if the
magnitude of the convection coefficient is much greater than the
diffusion coefficient, i.e., jβ1 j⪢α1 in (1) and jβ2 j⪢α2 in (2), some
kinds of stiffness in the form of boundary/interior layers and shock
waves emerge. The direct use of FDM and FEM to these
convection-dominated fluid flow problems will result in some
kinds of instability and oscillatory. In [20,21], the method of one-
sided or upwind scheme was adopted in FDM to obtain an
oscillation-free numerical solution and later Kopteva [22] exten-
ded upwind scheme to solve two-dimensional problems. Since
this fully upwind scheme introduces additional artificial diffusion
in contrast to the central difference scheme, Pandian [23] pro-
posed a partial upwind scheme by taking a weighted combination
of upwind scheme with central difference scheme. Moreover, the
upwind technique has also been used in [24–26] with FEM to
obtain stable numerical solutions without non-physical oscilla-
tions. Furthermore, Shu et al. have applied successfully the
Essentially Non-Oscillatory (ENO) and Weighted Essentially Non-
Oscillatory (WENO) schemes to obtain non-oscillatory solutions
[27–29], in which a nonlinear adaptive procedure was used to
choose local stencil automatically for higher accuracy.

For meshless methods, Gu and Liu [30] proposed an adaptive
upwind scheme to solve steady convection–diffusion problems.
This adaptive upwind scheme was later adopted in RBFCM to solve
steady convection–diffusion problems by Chandhini and Sanya-
siraju [31]. The comparison given in [32] indicates that the adap-
tive upwind technique works better than the fully upwind scheme.
This adaptive technique was also applied to solve a two-
dimensional coupled Burgers' equations by Siraj-ul-Islam et al.
[33]. Zahab et al. [34] used a localized collocation meshless
method with upwind scheme to model laminar incompressible
flows. Shu et al. [35] later applied the local RBF differential
quadrature method with upwind scheme to study inviscid com-
pressible flows with shock waves. From the numerical results
given in [36], it was found that the upwind scheme does not work
well at nodes near the boundary layer when the perturbation
parameter is not small. Recently, these upwind techniques have
been applied to solve convection-dominated problems [37,38]. For
solving hyperbolic problems, the upwind technique is also
applicable [39] to get numerical solutions without non-physical
oscillations. Besides, Fornberg and Lehto [40] used hyper-viscosity
with RBF-generated finite difference (RBF-FD) method to solve
convective PDEs. Flyer and Lehto in [41] developed a local
refinement algorithm for problems need higher resolution. It was
claimed that the effectiveness of RBF-FD will be greatly improve by
this local refine method.

To achieve higher accuracy and maintain the advantages of
meshless, stable, and non-oscillatory, we combine in this paper the
LRBFCM with partial upwind technique to solve time-dependent
and steady convection-dominated problems. Numerical results
indicate that this improved LRBFCM gives stable and higher
accurate numerical solutions without non-physical oscillation.
Compared with fully upwind scheme, the adoption of partial
upwind scheme reduces the effect of additional diffusion that is
brought by upwind scheme. Furthermore, this LRBFCM with par-
tial upwind scheme can approximate the solution with high
accuracy even when the convection effect is not so overwhelming

in contrast with diffusion. This makes the proposed method better
equipped to solve more general stiff problems.

The organization of this paper is as follows: In Section 2, we
introduce the LRBFCM and give explicit and implicit schemes to
solve boundary value problems (BVPs) and initial boundary value
problems (IBVPs). The LRBFCM with partial upwind scheme is then
presented for solving problems in both one- and two-dimensional
space. Section 3 is then devoted to the numerical verification on
the effectiveness and efficiency of LRBFCM with upwind and par-
tial wind schemes for solving the typical one- and two-
dimensional Burgers' equations with shock waves and singular
perturbed problems with boundary layers. In Section 4, our pro-
posed numerical method is applied to solve convection-dominated
problems with variable upwind directions. Conclusions are given
in Section 5.

2. LRBFCM for solving PDEs

Suppose uðxÞ is a function defined in Ω, where ΩDRN and N
is a positive integer. Given a set of pairwise distinct nodes
Ξ9fx1; x2;…; xng in Ω ¼Ω [ ∂Ω, the idea of approximating uðxÞ
by global RBFs is to assume a linear combination of RBFs for an
approximation of the solution as follows:

~uðxÞ ¼
Xn
j ¼ 1

λjϕðJx�xj J Þ ¼ΦðxÞΛ; ð3Þ

where each ΦðxÞ ¼ ½ϕðJx�x1 J Þ;ϕðJx�x2 J Þ;…;ϕðJx�xn J Þ�,
ϕðJx�xj J Þ is a RBF centered at xj, J � J is the usual Euclidean
norm between nodes x and xj, and Λ¼ ½λ1; λ2;…; λn�T is a vector of
unknowns to be determined.

There are many choices of RBFs in multivariate interpolation
[10] among which the Multiquadric (MQ) is one of the most
commonly adopted for superior convergence. In GRBFCM, the
following linear system is derived from direct collocation of
~uðxkÞ ¼ uðxkÞ ¼ uk

Ψ Λ¼ u;

where uðxkÞ;uk denote the exact and approximate solutions,
respectively, u¼ ½u1;u2;…;un�T , and the coefficient matrix Ψ¼
ϕðJxi�xj J Þ
� �

1r i;jrn is given as

Ψ¼

ϕðJx1�x1 J Þ ϕðJx1�x2 J Þ ⋯ ϕðJx1�xn J Þ
ϕðJx2�x1 J Þ ϕðJx2�x2 J Þ ⋯ ϕðJx2�xn J Þ
ϕðJx3�x1 J Þ ϕðJx3�x2 J Þ ⋯ ϕðJx3�xn J Þ

⋮ ⋮ ⋱ ⋮
ϕðJxn�x1 J Þ ϕðJxn�x2 J Þ ⋯ ϕðJxn�xn J Þ

0
BBBBBB@

1
CCCCCCA

n�n

:

The invertibility of the above coefficient matrix resulted from
multivariate interpolation has been well studied in [42] and hence
we have

Λ¼Ψ�1 u: ð4Þ
It follows from (3) and (4) that

uðxÞ � ~uðxÞ ¼ΦðxÞλ¼ΦðxÞΨ�1 u:

Due to the smoothness of RBFs, derivatives of uðxÞ can be
approximated by differentiating ~uðxÞ:

DαuðxÞ �Dα ~uðxÞ ¼
Xn
j ¼ 1

λj D
αϕðJx�xj J Þ ¼DαΦðxÞΛ;

where α¼ ðα1;α2;…;αNÞANN
0 , αj j ¼ α1þα2þ⋯þαN ,

Dα ¼ ∂ αj j

∂xα11 ∂xα21 …∂xαN1
,

DαΦðxÞ ¼ ½DαϕðJx�x1 J Þ;DαϕðJx�x2 J Þ;…;DαϕðJx�xn J Þ�.
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