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a b s t r a c t

The dynamic two-and-a-half-dimensional (2.5-D) Green's function for a poroelastic half-space subject to
a point load and dilatation source is derived based on Biot's theory, with the consideration of both a
permeable surface and an impermeable surface. The governing differential equations for the 2.5-D
Green's function are established by applying the Fourier transform to the governing equations of the
three-dimensional (3-D) Green's function. The dynamic 2.5-D Green's function is derived in a full-space
using the potential decomposition and discrete wavenumber methods. The surface terms are introduced
to fulfil the free-surface boundary conditions and thereby obtain the dynamic 2.5-D Green's function for
a poroelastic half-space with the permeable and impermeable surfaces. The half-space 2.5-D Green's
function is verified through comparison with the 2.5-D Green's function regarding an elastodynamic
half-space and the 3-D Green's function for a poroelastic half-space. A numerical case is provided to
compare between the full-space solutions and the half-space solutions with two different sets of free-
surface boundary conditions. In addition, a case study of efficient calculation of vibration from a tunnel
embedded in a poroelastic half-space is presented to show the application of the 2.5-D Green's function
in engineering problems.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many materials encountered in engineering, such as water-
saturated soils, oil-impregnated rocks, and air-filled foams, can be
considered as saturated porous media. The dynamic responses of a
saturated porous medium to internal sources are of great sig-
nificance to several disciplines, including geotechnical engineer-
ing, seismology, and geophysics. The boundary element method
(BEM) based on Green's function represents a powerful tool for the
study of these problems, especially when the calculation domain
of the problem is infinite or semi-infinite. Moreover, when three-
dimensional (3-D) loads such as arbitrarily directed incident plane
waves, point loads, distributed loads or moving loads are applied
to an infinitely long structure with a uniform cross-section, the
two-and-a-half-dimensional (2.5-D) BEM and the coupling of the
2.5-D BEM with other methods provide more efficient tools [1–7].
Although the structure can be considered as two-dimensional (2-
D), the responses of the structure due to various types of loading
will be 3-D; thus, the problem can be regarded as being 2.5-D.

When solving the above-mentioned problem with BEM, the
first step is to derive the Green's function. The dynamic Green's

function for saturated porous media has been investigated in the
previous research. Burridge and Vargas [8] first published the 3-D
Green's function for a poroelastic full-space subject to an impul-
sive point force. Norris [9] obtained the 3-D fundamental solutions
for a time-harmonic point force in the solid skeleton as well as a
time-harmonic point force in the pore fluid and proposed a closed-
form solution in the time domain associated with an impulsive
point load applied in a non-dissipative medium. Later, Bonnet [10]
and Cheng et al. [11] derived the full-plane (2-D) and full-space (3-
D) Green's functions for a time-harmonic point force and dilata-
tion source via analogy with thermoelasticity, respectively. Zim-
merman and Stern [12] also obtained the full-space fundamental
solutions in the frequency domain for a point force and dilatation
source using the potential decomposition method. Lu et al. [5]
presented a 2.5-D fundamental solution for a poroelastic full-space
using the Fourier transform and the potential decomposition
method.

Most geophysical applications involve an infinite boundary
with zero traction, which is normally used to model the traction-
free surface. Therefore, the half-space fundamental solutions for
saturated porous media are more desirable for solving practical
problems. Senjuntichai and Rajapakse [13] investigated the 2-D
fundamental solutions for a periodic line source buried in a por-
oelastic half-plane. Philippacopoulos [14] and Jin et al. [15] derived
the 3-D fundamental solutions for a vertical and horizontal point
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force, respectively, buried in a poroelastic half-space in the fre-
quency domain. Moreover, Zheng et al. [16] obtained the 3-D
Green's function of a poroelastic half-space with the permeable
surface for an internal point load and fluid source in a cylindrical
coordinate system. In addition, Zheng et al. [17] used the propa-
gator matrix method to obtain the dynamic 3-D Green's functions
in a multi-layered poroelastic half-space with the permeable
surface.

Summarising, the dynamic 3-D Green's functions subject to a
point load and dilatation source buried in a poroelastic full-space,
half-space and even layered half-space have been already available
for engineering practice. As aforementioned, the 2.5-D approaches
are more efficient than 3-D approaches, however, the existing
dynamic 2.5-D Green's function has only been derived in a full-
space [5]. When the BEM based on the full-space Green's function
is used to analyse 3-D dynamic poroelastic problems in a half-
space, the free surface of the half-space must be discretised with
boundary elements. As a result, two problems arise: First, the
increased number of elements will consume large amounts of
memory and CPU time. Second, the meshing of the infinite free
surface of the half-space requires mesh truncation, which can lead
to significant errors near the edges of the model [3]. Nevertheless,
these two problems can be dealt with the half-space Green's
function implemented in the BEM. Therefore, the dynamic 2.5-D
Green's function for a poroelastic half-space may represent a more
efficient and precise approach for solving 3-D dynamic poroelastic
problems in a half-space by means of the 2.5-D BEM.

In the present paper, the dynamic two-and-a-half-dimensional
Green's function for a poroelastic half-space with a permeable
surface and an impermeable surface is developed. The dynamic
2.5-D Green's function corresponds to the solutions for the fol-
lowing two problems: an internal point load applied to the solid
skeleton and a dilatation source applied within the pore fluid.
First, the governing differential equations (u–p formulation) of the
2.5-D Green's function for saturated porous media are derived
based on Biot's theory and the Fourier transform. Then, a method
of displacement potentials is developed to decompose the
homogeneous wave equations of the u–p formulation into two
scalar and one vector Helmholtz equations, through which the
general solutions are yielded. Using the discrete wavenumber
method, the dynamic 2.5-D Green's function is derived in a por-
oelastic full-space. Note that the mathematical derivations of the
proposed full-space 2.5-D Green's function here has the following
ameliorated features, compared to Lu's method [5]. First, two
scalar and one vector potentials are used to decompose the
homogeneous wave equations subject to an internal point load, in
contrast to Lu's study. Second, the discretization of the wave-
number over the horizontal coordinate x is performed in this
study. Therefore, it is simple for the present method to reach the
half-space 2.5-D Green's function through finding the surface
terms that satisfy the free-surface boundary conditions.

As aforementioned, the surface terms are introduced to fulfil
the boundary conditions at the surface of the half-space, and both
a permeable surface and an impermeable surface are considered.
The superposition of the contributions of the full-space 2.5-D
Green's function and the surface terms yields the half-space 2.5-D
Green's function for saturated porous media. The result of an
extreme case for the new 2.5-D Green's function with a vanishing
porosity is compared with that of the existing half-space 2.5-D
Green's function for an elastodynamic problem. After re-
transforming the 2.5-D Green's function into the space domain,
the derived half-space 2.5-D Green's function is compared with
the existing 3-D Green's function for poroelastic half-space. In
addition, a numerical case is provided to compare between the
full-space solutions and the half-space solutions with two differ-
ent kinds of free-surface boundary conditions. In order to show

the application of the 2.5-D Green's function in engineering pro-
blems, a case study of calculating vibration from a tunnel
embedded in a poroelastic half-space is also presented using the
proposed half-space Green's function along with 2.5-D boundary
integral equation for saturated porous media [6] and the modified
Pipe-in-Pipe (PiP) model in which the soil is modelled as the
saturated porous medium [18].

2. Governing equations and general solutions

2.1. Biot's theory: governing equations

Based on Biot's theory [19–22], the constitutive equations of
dynamic poroelasticity are expressed as

σ¼ 2μεþλeI�αpI ð1aÞ

p¼ �αMeþMζ ð1bÞ
where

e¼∇Uu; ζ ¼ �∇Uw ð1cÞ
Using a superimposed dot to denote the time derivative and an

asterisk “n” to denote the time convolution, the motion equations
are

∇UσþF¼ ρb €uþρf €w ð2aÞ

�∇pþf ¼ ρf €uþm €wþη
k
KðtÞ � _w ð2bÞ

The strain–displacement relationship is

ε¼ 1=2ðu∇þ∇uÞ ð3Þ
where

σ: total stress tensor;
ε: average strain tensor;
p: pore pressure;
e: dilatation of the solid skeleton;
ζ: volume of fluid injected into a unit volume of the bulk

material;
u: average skeleton displacement;
w: average fluid displacement relative to the solid skeleton;
I: second-order identity tensor;
F: body forces experienced by the saturated porous medium;
f: body forces experienced by the pore fluid;
λ, μ: solid skeleton Lamé constants, μ is the shear modulus of

the bulk material, λ¼1/K�2/3μ (K: the coefficient of the jacketed
compressibility);

α, M: Biot's parameters, α¼1�δ/K (δ: the coefficient of the
unjacketed compressibility), M¼1/(γþδ�δ2/K) (γ: the coefficient
of fluid content for the unjacketed test);

η: viscosity of the pore fluid;
k: permeability of the saturated porous medium;
ρb¼(1�ϕ)ρsþϕρf: density of the bulk materials (ρs: density of

solid skeleton, ρf: density of pore fluid, ϕ: porosity);
m¼a1ρf /ϕ (a1: tortuosity); and
K(t): time-dependent viscosity correction factor, which

describes the transition between the viscous flow in the low-
frequency range and the inertia-dominated flow in the high-
frequency range.

λ, μ, α and M are the elastic coefficients of the material, Biot
and Willis [23] have proposed experiments to measure four
quantities from which, in turn, the coefficients λ, μ, α and M may
be determined. These measured quantities are μ, K, δ and γ .
Hughes and Cooke [24] described measurements of porosity ϕ in
jacketed compression tests. In addition, Detournay and Cheng [25]
listed the poroelastic coefficients for various materials.
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