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a b s t r a c t

The displacement discontinuity boundary integral equation method is extended to analyze the singu-
larity of near-border fields of the planar crack of arbitrary shape in the isotropic plane of a three-
dimensional transversely isotropic piezoelectric semiconductor. The hyper-singular boundary integral
equations are derived in terms of the displacement, electric potential and carrier density discontinuities
across the crack faces, in which body integrals for the carrier density are introduced. Based on the finite-
part integrals, singularity exponents and asymptotic expressions of the crack border fields are obtained.
The stress, electric displacement and electric current intensity factors are given in terms of the dis-
placement, electric potential and carrier density discontinuities. Finite element results for penny-shaped
and line cracks based on the piezoelectric-conductor iterative method are used to verify the derivations
of the intensity factors.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric materials are usually considered to be non-
conducting. In 1960, Hutson [1] discovered the piezoelectric
effect in semiconductors. This type of semiconductor is called the
piezoelectric semiconductor (PSC). In a PSC, mechanical defor-
mation can induce an electric field and the induced electric field
can produce an electric current. White [2] showed that an acoustic
wave traveling in a PSC medium can be amplified by the appli-
cation of a dc electric field. The interaction between mechanical
fields and mobile charges in PSCs is called the acoustoelectric
effect [2,3]. PSCs have been widely used in various smart struc-
tures, and electromechanical devices and systems [4–8]. Ten years
ago, Hickernell [9] reviewed the development of PSC devices. Since
then, the discovery of properties stemming from piezoelectric-
semiconducting coupling in nanowires [10] has inspired the
development of many devices; it has created a new field called
piezotronics that has attached interests for research and various

applications. Very recently, Liu et al. [11] reviewed the funda-
mental theories of piezotronics and piezo-phototronics and Wen
et al. [12] summarized the development and progress in
piezotronics.

The properties of PSCs are very sensitive to internal defects
such as cracks and cavities in materials and structures [13].
Studying cracks in PSCs not only provides benefits in the design
and performance of smart devices, but is also important from the
perspective of the theory of fracture mechanics for multi-fields.
Yang [14] studied an anti-plane, semi-infinite crack in a PSC of
6mm symmetry and obtained an exact solution for the electro-
mechanical fields around the crack. Employing the Fourier trans-
formation method to reduce the mixed boundary value problem to
a pair of dual-integral equations, Hu et al. [15] analyzed a finite
mode III crack in a PSC of 6-mm crystals and presented numerical
results to show how the fracture behavior affects the semi-
conducting properties. Sladek et al. [16] conducted a transient
dynamic analysis of an anti-plane crack problem in functionally
graded PSCs using meshless local Petrov-Galerkin method. They
obtained a system of ordinary differential equations for the nodal
unknowns involved and noted that the stresses and electric dis-
placement field in functionally graded PSCs exhibit the same
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singularities at crack tips as in a homogeneous piezoelectric solid.
Using the same method, Sladek et al. [17] solved the in-plane crack
problem in PSCs under a transient thermal load and obtained the
effect of initial electron density on the intensity factors and energy
release rate. Sladek et al. [18] investigated the influence of electric
conductivity on intensity factors for cracks in conducting piezo-
electric materials and functionally graded conducting piezoelectric
materials. The interaction integral method was developed for
evaluating the intensity factors in functionally graded conducting
piezoelectric materials. Very recently, Fan et al. [19] proposed a
piezoelectric-conductor iterative method (PCIM) for fracture ana-
lysis of PSCs under combined mechanical loading, electric strength
field (or electric displacement) and electric current (or electric
carrier density). However, a PSC device in practical applications is
generally three-dimensional (3D). To date, a study of 3D fracturing
in PSCs has yet to be reported.

As is well known, the boundary element method (BEM) has
some advantages over the finite element method (FEM), for
example, its discretization of a one-dimensional reduction, as
opposed to the domain discretization encountered in FEM. Chal-
lenges remain when dealing with fracture problems associated
with the two degenerated surfaces of a crack. There are some
special techniques to overcome this difficulty. For example, Snyder
and Curse [20] applied the special Green functions for a line crack
to avoid the discretization of its two sides. Another method is the
sub-region method presented by Blandford et al. [21], in which the
cracked region is divided into several sub-regions separated along
the crack surfaces and the conventional BEM is applied to each
sub-region. Hong and Chen [22] presented the dual boundary
integral equations method to solve crack problems. This dual
system incorporates the displacement and traction boundary
integral equations by introducing the hyper-singular equation.
Crouch [23] proposed the displacement discontinuity method
(DDM) so that discretization is required only on one side of the
crack surface; this method has been successfully extended to
analyze 3D crack problems in elastic media [24–26], and piezo-
electric [27] and magneto-electro-elastic media [28]. In addition,
the equivalence of the DDM and BEM for solving crack problems
was studied by Hong and Chen [29] and revisited by Liu and Li
[30]. With the current state of affairs and motivated by related
issues, we extend DDM to cracks in 3D transversely isotropic PSCs.
As a first step, we develop the extended displacement boundary
integral equation method to analytically study singularity beha-
viors near the crack border, which is an essential problem in
fracture mechanics.

The paper is organized as follows. Basic equations for the PSC
are given in Section 2. In Section 3, the extended displacement
discontinuity boundary integral equations are established. Section
4 analyzes the singularities around the crack border and gives the
intensity factors in terms of the extended displacement dis-
continuity. Finite element numerical examples are given in Section
5. Finally, conclusions are drawn in Section 6.

2. Basic equations

For the static problem of a homogeneous n-type PSC (with a
larger electron concentration than hole concentration) in the
Cartesian coordinate system oxyz in the absence of body force, the
governing equations based on the mechanical equations of equi-
librium, Gauss’ law of electrostatic, and the conservation of charge
can be given as [17]
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where σij; Di; and Ji with i, j¼x, y, z, are the components of stress,
electric displacement and electric current, respectively, which
together are called the extended stress; q and n are the electronic
charge and the change in the electron density, respectively.

If the PSC is transversely isotropic with the plane of isotropy in
the oxy plane and polarization direction along the z-axis, the
constitutive equations can be expressed as [14,17]
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Nomenclature

σij; Di; Ji components of stress, electric displacement and
electric current, respectively, which are called the
extended stress

u; v;w;φ;n mechanical displacement, electric potential and
carrier density respectively, which are called the
extended displacement

cij; eij; εij;μij; dij elastic, piezoelectric, dielectric, electron mobi-
lity and carrier diffusion constants

ωim; ϑim; αim;Ai; Bmi material related constants in the Green
functions

Γi
j;Κ

i;Γi;Κ i;Θn
; Tn corresponding integrands in the outer

boundary integrals
pi; dn; jn mechanical tractions, surface charge, surface electric

current value, respectively, which are called the
extended tractions

Ψ n
; Φn the Green function of Laplace equation

KF
I ;K

D;K J;KF
II;K

F
III extended stress intensity factors

αx; αy; αz; αφ; αn singularity exponents
F I; FD; F J normalized extended stress intensity factor
Lij material related constants in the extended displace-

ment discontinuity boundary integral equations
q electronic charge
ψ equivalent electric carrier density
χ equivalent body electric charge
V a finite domain
S0 outer boundary of V
S an arbitrarily shaped planar crack
∅ empty set
Sþ , S� upper and lower crack surfaces
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