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a b s t r a c t

In this study, two different meshfree methods consisting of the Radial Basis Functions (RBFs) and the
Moving Least Square Method (MLS) are applied to solve the Grad–Shafranov (GS) equation for the axi-
symmetric equilibrium of plasma in the tokamak. The validity and the effectiveness of the proposed
schemes are studied by several test problems through absolute and Root Mean Squared (RMS) errors.
Although, during the past few years, a meshfree method is normally applied in magnetohydrodynamic
(MHD) studies to the numerical solution of partial differential equations (PDEs) but to the best of our
knowledge, its application in MHD equilibrium of the tokamak plasma investigations is rare. The future
more extensive studies regarding this numerical method would definitely have a significant impact on
improving tokamak numerical tools.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A tokamak is a type of magnetic confinement device, for pro-
ducing controlled thermonuclear fusion power. In order to achieve
controlled magnetic fusion, the development of mathematical
models and computational codes to simulate tokamak plasma
behavior, is crucial. The acceptable models of plasma in the toka-
mak ensure successful device design and plasma performance
prediction.

Magnetohydrodynamic (MHD) equilibrium of axisymmetric
plasma is governed by the Grad–Shafranov (GS) equation, which
was derived by Grad and Rubin [1], Shafranov [2] and Lust et al. [3]
independently. This equation is a nonlinear, elliptic partial differ-
ential equation obtained from the reduction of the ideal MHD
equations to two dimensions, often for the case of toroidal axi-
symmetry. Solving the equilibrium equation with fixed plasma
boundary is called fixed boundary, while unfixed plasma boundary
is called free boundary problems.

Equilibrium equation is the fundamental of exploring plasma
phenomena in a tokamak, including stability, transport and tur-
bulence, and plays an important role in the design of this device.
Therefore, giving an accurate and efficient solution would have an
important effect on the tokamak fusion research.

To date, various numerical methods in solving tokamak equi-
librium equation have been written, validated and incorporated

into comprehensive systems for tokamak design and analysis. A
number of main numerical methods applied in equilibrium solver
codes are the finite difference method (FDM), finite element
method (FEM), boundary element method (BEM), Green's function
methods and etc.

The FDM has been used in many equilibrium equation solver
tools and it is considered to be a powerful numerical method
which has been utilized extensively for years. A numerical equi-
librium calculation for a tokamak plasma was first carried out by
Callen and Dory [4]. They used FDM and Successive Over Relaxa-
tion (SOR) algorithm to solve a fixed boundary equilibrium of a
tokamak with a circular cross section in cylindrical coordination.
Suzuki [5] used FDM and Alternating Direction Implicit (ADI)
algorithm combined with the Marder–Weitzner iteration scheme
[6] to solve GS equation with free boundary condition. The con-
ductive shells of arbitrary cross sections and external coils are
considered in his study. The FDM again was used by Cenacchi et al.
[7] to solve this equation with external coils and without a con-
ducting shell. The other efficient solver based on Cyclic Reduction
(CR) algorithmwas presented by Helton and Wang [8] to study the
shaping and control of equilibrium in tokamak with external coils.
Johnson et al. [9] also used the same algorithm to solve GS equa-
tion with both fixed and free boundary. A few years later, Ling and
Jardin [10] applied FDM to prepare a fast equilibrium solver for
both fixed and free boundary conditions. In their calculations, the
free-boundary formulation was based on the minimization of a
mean-square error, while the fixed-boundary solution was based
on a variational principle and spectral representation of the
coordinates. Moreover, the FDM and its applications in plasma
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physics, especially the GS equation have been investigated in detail
by Jardin [11] in his book.

The FEM is also used widely in the tokamak equilibrium solver
tools. Lao et al. [12] applied the variational method to find
approximate solutions of the GS equation. Semenzato et al. [13],
Kerner and Jandel [14] and Gruber et al. [15] solved equilibrium
equation by FEM with consideration of flow in their calculations. A
numerical code using Hermite bicubic FEM has been developed by
Lutjens et al. [16] for the computation of axisymmetric MHD
equilibria. A direct variational method based on energy principle
was applied by Ludwig [17]. This method uses a spectral repre-
sentation of the magnetic flux surfaces in terms of Chebyshev
polynomials. Blum et al. [18,19] studied tokamak plasma equili-
brium and reconstructed some parameters using FEM.

Another useful method is the BEM. This method is particularly
suitable since it requires discretization only on the boundary.
Itagaki and Fukunaga [20] used this numerical method to solve GS
equation for fixed boundary calculations. In their research, the
singularity of the fundamental solution, which consists of two
elliptic integrals, and the properties of singular integrals was
minutely investigated. More study also was carried out by Itaki
and Shimoda [21]. In addition, Aydin et al. [22] studied the
numerical solution of the GS equation by using the boundary
element, the finite element and the differential quadrature
methods for rectangular and D-shape plasmas.

In addition to FDM, FEM and BEM, some other methods, such as
Green's function, expansion and so on have also been used in
equilibrium solver tools [23–26]. Takedai and Tokuda [27]
reviewed the computation methods of the MHD equilibrium of a
tokamak plasma comprehensively as possible.

Over the last decade, the meshfree method has become an
active research area to solve the PDEs numerical solution, parti-
cularly in MHD field. Despite the significant improvements of this
scheme in different fields, it is rarely applied in tokamak plasma
equilibrium calculations.

Imazawa et al. [28] focused on the meshfree methods, espe-
cially RBF-MFS (Method of Fundamental Solutions) and KANSA to
solve the GS fixed boundary problem. Nath et al. [29,30] also used
MFS to solve the same problem. Further studies using this method
do not exist in this field any more.

Due to the rarity of tokamak equilibrium studies using the
meshfree method, it is expected that more studies using this
numerical solution would have a considerable impact on numer-
ical tools in tokamak equilibrium research.

In this paper, the RBFs and MLS methods are applied to cal-
culate the fixed boundary Grad–Shafranov (GS) equation for the
axisymmetric equilibrium plasma. Four test problems related to
the tokamak plasma are studied and some errors are reported. The
obtained results confirm the validity and effectiveness of the
proposed schemes.

The organization of this paper is as follows: in Section 2,
derivation and properties of the GS equation are summarized.
Description of RBFs and MLS methods and their applications to
solve the GS equation is presented in Section 3. Section 4 contains
the results for some test problems. Finally, this study is concluded
in Section 5.

2. The equilibrium equation

In this section the Grad–Shafranov (GS) equation that presents
axisymmetric equilibrium configuration of a tokamak plasma
is posed.

The equation of motion for a charged-neutral plasma placed in
a magnetic field is described by adding Lorentz force to the Navier

Stokes equations.

ρ
∂
∂t
þv � ∇

� �
v¼ J � B�∇p; ð1Þ

where ρ is the mass density, v is the mass flow velocity, p is the
plasma pressure, J is the current density and B is a magnetic field.

In equilibrium, no time variation is involved ð∂=∂t ¼ 0Þ in cal-
culations. Also, since ion Mach number (the ratio of the plasma
velocity to the ion thermal velocity) is much smaller than unit, for
almost all situations of fusion interest, neglecting the inertial term
is justified and static equilibria can be considered ðv¼ 0Þ [31].
Several studies based on meshfree (except for tokamak equili-
brium studies) have been carried out without this assumption
[32,33]. Finally, the equation to be solved for tokamak plasma
equilibrium is simplified to

∇p¼ J � B: ð2Þ
This basic relationship expresses that at the time of equilibrium
the plasma pressure and the magnetic forces are in balance. Eq. (2)
along with Maxwell's equations

∇� B¼ μ0J;
∇ � B¼ 0; ð3Þ
describes ideal magnetohydrodynamic equilibria. The μ0 para-
meter is the magnetic permeability. Combining this equations and
using the scalar functions, ψ ¼ψ ðR; ZÞ and f ¼ f ðR; ZÞ, the current
density and magnetic field can be represented as

J¼ �Δnψ∇ϕþ∇f � ∇ϕ;
B¼∇ψ � ∇ϕþ f∇ϕ; ð4Þ
where ψ is the poloidal flux function and f is the poloidal current
function. Here elliptic operator, Δn, in cylindrical coordinates,
ðR;ϕ; ZÞ, is defined by

Δnψ ¼ R
∂
∂R

1
R
∂ψ
∂R

� �
þ ∂
∂Z

∂ψ
∂Z

� �
: ð5Þ

The ∂=∂ϕ¼ 0 due to assumed axisymmetric. Finally, the poloidal
part of the force balance equation reduces to

Δnψ ¼ μ0RJtr ; ð6Þ
where Jtr is the toroidal current density. Considering the relations
f ¼ f ðψ Þ and p¼ pðψ Þ

μ0RJtr ¼ � μ0R
2 dp
dψ

þ f
df
dψ

� �
: ð7Þ

Eq. (6) is a nonlinear second-order elliptic partial differential
equation of the magnetic flux function derived independently by
Grad and Rubin [1], Shafranov [2] and Lust et al. [3]. This equation
is called the Grad–Shafranov equation or the Grad–Schltiter–Sha-
franov equation.

According to Eq. (7) the right-hand side of the equation
includes the pressure and poloidal current profiles both of which
depend on poloidal flux, ψ. In some studies the simple pressure
and poloidal current profiles are used to convert the GS equation
into a linear, inhomogeneous partial differential equation, which is
much simpler to solve analytically. These kinds of profiles are not
useful physically but have the exact analytical solution and are
being used extensively in validating the numerical computations.

In order to test more realistic profiles their dependence on ψ is
considered. Therefore the GS equation should be solved iteratively
to overcome this nonlinearity. Consequently, according to the
described method the following linear problem is solved at kth
iteration step,

ψ kþ1 ¼ 0; on ∂Ω;

Δnψ kþ1 ¼ �μ0JtrðR; Z;ψ kÞ; in Ω: ð8Þ
where Ω denotes a domain bounded by a closed curve ∂Ω. The
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