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a b s t r a c t

A radial basis collocation method, to solve parabolic and hyperbolic equations, based on the local space–
time domain formulation is developed and presented in this paper. The method is different from those
that approximate the time derivative using different formulas such as the implicit, explicit, method of
lines, or other numerical methods. Considering a partial differential equation with d spatial dimensions,
our technique solves the problem as a ðdþ1Þ-dimensional one without distinguishing between space and
time variables, and the collocation points have both space and time coordinates. The parabolic equation
is solved using the governing domain equation as a condition on the boundary characterized by the final
time T. The hyperbolic equation is solved using two different methods. The first one is based on adapting
the technique used for solving parabolic equations. The second one is a new technique that looks at the
problem as an ill-posed one with incomplete boundary condition data at the final time T of the space–
time domain. The accuracy of our proposed method is demonstrated through different examples in one-,
two- and three-dimensional spaces on regular and irregular domains.

& 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

Initial boundary value problems (parabolic or hyperbolic)
can be solved using different numerical methods such as finite
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element, finite volume, boundary element, meshless methods,
fundamental solutions, spectral and wavelet methods . In most
published works, these methods are based on differentiating
between time and space variables. They all start by discretizing the
time variable using implicit, explicit, Runge–Kutta or any other
known method such as the method-of-line approach, and solve
the problem by computing the approximate solution at each time
t. Some work was published using space–time finite element
method, such as the technique developed by Tazduyar et al. in [8]
for the computation of fluid–structure interaction problems. Klaij
et al. have also developed the space–time discontinuous Galerkin
finite element method for solving compressible Navier-Stokes
equations in [9] and advection–diffusion problems in [10]. The
technique has also been applied to shallow water flows by Ambati
et al. in [11].

To our best knowledge the space–time meshless formulation
has been discussed only by a small number of researchers, such as
Netuzhylov in [12] where the author developed the space–time
meshless collocation method based upon the Interpolating Moving
Least Squares (IMLS) technique and applied it to solve coupled
problems with moving boundaries. Young et al. [15] have used
time-dependent fundamental solutions to solve homogeneous
diffusion equations directly. Their proposed scheme can be con-
sidered a space–time collocation method as it is free from time
discretization. The first published work on the space–time
approach using radial basis functions (RBF) is the paper by Li and
Mao [5]. They applied the global collocation method known as
Kansa method using the Multiquadric function (MQ). The techni-
que developed is used to solve only the parabolic inverse problem
of groundwater contaminant source identification. Beside the fact
that their formulation is global, the algebraic system obtained is
not square and the least squares method was introduced to
overcome the ill-posedness of the linear system. Their technique
was also used to solve inverse heat conduction problems [4].
Furthermore, Li and Mao developed in [19] a global space–time
radial basis collocation model for estimating river pollution sour-
ces. In their analysis, they used the RBF developed by Myers et al.
in [6] defined as the product of two RBFs, one depending on the
space variable and the other on the time variable in the form ϕðx
; tÞ ¼ϕ1ðxÞϕ2ðtÞ where ϕ1 and ϕ2 are RBFs on space and time
variables, respectively. Their technique is applied to parabolic
equations only, see [6].

In this paper we develop an RBF-based space–time localized
meshless collocation method based to solve d-dimensional para-
bolic and hyperbolic problems in ðdþ1Þ-dimensional space–time
domains without differentiating between space and time vari-
ables. We study the solution of the following time-dependent
equations:

∂u
∂t
ðx; tÞþLuðx; tÞ ¼ f ðx; tÞ in Ω� ð0; T �

Buðx; tÞ ¼ gðx; tÞ on ∂Ω� ð0; T�
uðx;0Þ ¼ u0ðxÞ in Ω ð1Þ
and

∂2u
∂t2

ðx; tÞþLuðx; tÞ ¼ f ðx; tÞ in Ω� ð0; T �
Buðx; tÞ ¼ gðx; tÞ on ∂Ω� ð0; T�
uðx;0Þ ¼ u0ðxÞ in Ω
∂u
∂t
ðx;0Þ ¼ u1ðxÞ in Ω ð2Þ

without first discretizing the time and then solving the problem in
space domain, as it is usually the case with many numerical
methods. Here L denotes a second order linear differential
operator, B is a boundary operator, f, g, u0 and u1 are given smooth
functions and Ω is a subset of Rd.

Besides some technical points in the numerical implementa-
tion, the main originality of our paper is the use of a local for-
mulation of the RBF collocation method on the space–time domain
to solve parabolic and hyperbolic equations. Another originality of
our work is the application of the developed technique to solve
hyperbolic equations by considering them as ill-posed problems.
The developed formulation leads always to a square algebraic
system which is not the case in [4,5,19,6]. The main advantages of
our technique are

1. removing the need for a discussion of the time stability analysis
of the discrete system as it is the case for other time integration
techniques, such as the explicit method, θ-method and others,

2. reducing the computational time as there is no need to re-
compute the matrix for the resulting algebraic system at each
time level, unlike the case for others time integration methods
used to solve PDEs with time-dependent coefficients.

The paper is organized as follows. In Section 2 we introduce the
space–time formulation of parabolic and hyperbolic problems. In
Section 3 we give the interpolation by RBFs in space–time domain.
In Section 4 we present the space–time localized RBF collocation
method with a brief recall of the global RBF collocation method.
Section 5 is devoted to the discussion of results obtained by sol-
ving different parabolic and hyperbolic examples in one, two, and
three-dimensions in both regular and irregular domains. We
conclude in Section 6.

2. Space–time problem formulation

In this formulation the traditional d-dimensional time-
dependent problem in space is transformed into a ðdþ1Þ-dimen-
sional one. The problem is then formulated in spatial–temporal
variables. The boundary of the new domain ΩT ¼Ω� ½0; T � given
in Fig. 1 is defined by ∂Ω� ½0; T �, Ω� ft ¼ 0g and Ω� ft ¼ Tg. The
formulation of the technique depends on the type of the problem
considered. For the case of a parabolic equation, defined by Eq. (1),
we formulated the system of equations as a boundary-value pro-
blem in the new space–time domain, with boundary conditions on
the boundary of the space–time domain. The system of equations
is then written as

∂u
∂t

ðx; tÞþLuðx; tÞ ¼ f ðx; tÞ ð3Þ

for the equation in the space–time domain Ω� ð0; TÞ, and
Buðx; tÞ ¼ gðx; tÞ
uðx; tÞ ¼ u0ðxÞ ð4Þ
on ∂Ω� ½0; T � and Ω� ft ¼ 0g, respectively. As the problem is still
ill-posed for the space–time domain since it needs a boundary
condition on Ω� ft ¼ Tg, Eq. (3) can be considered as a boundary
condition on Ω� ft ¼ Tg
∂u
∂t
ðx; tÞþLuðx; tÞ ¼ f ðx; tÞ on Ω� t ¼ Tf g: ð5Þ

The parabolic problem is then summarized as follows:

∂u
∂t

ðx; tÞþLuðx; tÞ ¼ f ðx; tÞ in Ω� ð0; T �
Buðx; tÞ ¼ gðx; tÞ on ∂Ω� ð0; T �
uðx; tÞ ¼ u0ðxÞ on Ω� ft ¼ 0g
∂u
∂t

ðx; tÞþLuðx; tÞ ¼ f ðx; tÞ on Ω� ft ¼ Tg

8>>>>>>><
>>>>>>>:

ð6Þ

The new formulation leads to a well-posed problem that can be
solved once to approximate the solution at any point (x,t). Note
that the linear algebraic system is square since the number of
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