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a b s t r a c t

The local radial basis function (RBF) scheme is developed to simulate 2D and 3D heat transfer and flow
dynamics of generalized Newtonian fluids (GNF). The local RBF scheme is a meshless numerical method
based on radial basis functions with localized technique. The procedure of localization reduces the
computational cost more efficiently than the traditional global RBF method. This meshless method does
not require mesh generation, numerical integration and only needs point collocation. Besides, it is very
easy to interpolate physical values and its derivatives everywhere in the domain. We consider one iso-
thermal and three non-isothermal multidimensional transient GNF fluid and heat problems in this paper.
The dynamic viscosity of the GNF is specified as two different models: the power law model (tem-
perature independent) or Cross model (temperature dependent). The viscous heating is also considered
in this work. Numerical results show that the local RBF scheme is stable and accurate as far as the four
tested cases are concerned.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Newtonian or generalized Newtonian fluids are ubiqui-
tous, such as butter, some biological fluids, especially the high
molecular weight polymers which are used for our commodity,
high-quality electronics, consumer products, and so on. The phe-
nomena of non-Newtonian fluids are very complex and in general
non-linear in nature as well. In engineering technology, we gen-
erally use numerical methods with generalized Newtonian fluids
model to simplify the problem and approximate the flow motion.

There are many existing literature for numerical solutions
presented to approximate the problems of flow dynamics and heat
transfer in generalized Newtonian fluids. In steady simulations,
Bell and Surana [1] presented a p-version least squares finite
element formulation for steady 2D isothermal and non-isothermal
flows. The p-version least squares finite element formulation was
used to approximate the steady-state solution of fully developed
flows between parallel plates, flow in symmetric sudden expan-
sions and lid-driven cavity. Bao [2] used an economical finite
element scheme to solve the steady-state solutions of backward-
facing step and four-to-one abrupt contraction flows. In transient
simulations, Neofytou [3] used a third order upwind finite volume
method to simulate the unsteady lid-driven cavity flow of GNF.
The unsteady incompressible Navier-Stokes equations in primitive

variables (p; v) are discretized by the semi-implicit method for
pressure linked equation (SIMPLE). Han and Li [4] developed a
finite element method with interactive stabilized fractional step
Crank-Nicolson based split (CNBS) scheme for non-isothermal
flows. They used the CNBS to discretize and solve the
momentum-mass conservation equations and also applied the
characteristic-Galerkin (CG) method to solve the energy equation.
Vaz Jr. and Zdanski [5] presented a fully implicit finite difference
method for polymer melt flow and heat transfer. Then Zdanski and
his collaborators extended their scheme to 2D and 3D non-
isothermal polymer melt flow in sudden expansions [6,7].

Although those researches show good performances in simu-
lating the GNF flows [8–10], the numerical methods adopted are
all mesh-dependent methods which need time-consuming mesh
generations. The present work proposes a meshless radial basis
function (RBF)-based method for 2D and 3D unsteady GNF flows.
The merits of the meshless method such as present RBFs collo-
cation method require neither mesh nor relationship of mesh
topology. Therefore, it is very suitable to deal with moving
boundary problems or irregular geometry especially for the three-
dimensional engineering problems. The concept of the RBF-based
scheme is that no mesh topology is needed but only the distance
of points in the computational domain, so that extension to higher
dimensions is only a straightforward procedure not like tedious
conventional methods. Further to interpolate the accurate physical
values and its higher derivatives in the domain become very easy.
Besides it belongs to the high-order approximation scheme so that
few points are needed. This is the advantages of meshless RBFs
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over low-order polynomial approximations such as the mesh-
dependent FDM, FEM and FVM. These features make the meshless
RBFs method very attractive to the numerical modelers. The
advantages of modeling by RBFs collocation method will be sup-
ported by the following sections in the text. Until now, only few
researches focus on the application of the RBF-based scheme for
non-Newtonian flows. Bernal and Kindelan [11] used global RBF
scheme for the injection problem of non-Newtonian Hele-Shaw
flow. They have two important assumptions: (1) creeping flow, the
inertia term is ignored; (2) the thermal conduction in flow direc-
tion and the thermal convection are neglected since the thickness
is small.

The global RBF scheme which considers all global points as
supporting nodes induces a highly ill-conditional full matrix.
Inverting the full matrix will cost a lot of CPU time and memory,
especially for unsteady problems. Lee et al. [12], Tolstykh and
Shirobokov [13] and Shu et al. [14] presented more applications of
the local RBF scheme. The localized RBF scheme only considers the
supporting node in the local region. The system matrix is sparse,
so ill-condition problem is overcome and the CPU and memory
usages are reduced. Sanyasirajy and Chandhini [15] applied the
local RBF scheme to solve 2D unsteady incompressible Newtonian
viscous flow in primitive variables formulation (p; v) and then
Sevens et al. [16] extended to 3D convective-diffusion problems. In
the same trend, Mai-Duy and Tanner [17] employed the integrated
RBF networks to compute the non-Newtonian fluid flow problems.
Osswald and Hernández-Ortiz [18] presented the RBF method for
steady non-Newtonian heat transfer flow problem with 2.5D
solution.

In this paper we will use the meshless local RBF scheme to
simulate 2D and 3D unsteady, incompressible GNF flow dynamics
and heat transfer problems. The governing equations are based on
the conservation laws of mass, momentum and energy. The
Navier–Stokes equations (the equations of conservations of mass
and momentum) are formulated in primitive variables (p; v). We
use the local RBF scheme with the Chorin pressure projection
method (PPM) [19] in 1968 or the Patankar and Spalding SIMPLE
[20] in 1972 to discretize the pressure-velocity coupling equations.
The GNF dynamic viscosity is defined by the power law model
(temperature independent) or Cross model (temperature
dependent).

The governing equations for the incompressible GNF thermal
flow are mass, momentum and energy conservation equations and
are described in Section 2. Section 3 gives the details of local RBF
scheme for solving computational fluid dynamics and heat trans-
fer problems and how to interpolate numerical solutions of phy-
sical values and their derivatives by the local RBF scheme. In

Section 4 we carry out the validation of the local RBF scheme by
solving four benchmark GNF problems (lid-driven cavity flow,
non-isothermal Poiseuille flow, 2D and 3D non-isothermal back-
ward-facing step flow). Numerical results for these problems are
compared with the results found in the literature. Section 5 is the
conclusions based on the numerical results.

2. Governing equations

In present mathematical model, we consider the unsteady flow
phenomena of incompressible GNF. No body forces are taken into
account. The governing equations to be solved are mass and
momentum conservation equations [21],

∇ � v¼ 0; ð1Þ

ρ
Dv
Dt

¼ �∇pþ ∇ � τ½ �; ð2Þ

where, ∇ is the gradient operator, v is the velocity vector, D=Dt is
the material derivative, ρ is the density, p is the pressure, and τ is
the viscous stress tensor.

The viscous stress of the incompressible generalized New-
tonian fluid is defined by the constitutive equations:

τ¼ η _γ; ð3Þ
where η is the dynamic viscosity and _γ¼ ∇vþ∇vT is the rate of
deformation tensor. In Newtonian fluid, the viscosity η is a con-
stant. In GNF, the viscosity η can be expressed as a function of
shear rate or a function of shear rate and temperature. In this
paper, we describe the viscosity η by the power law model as well
as the Cross model:

For the power law model:

η¼ η _γ
� �¼m0 _γn�1; ð4Þ

where m0 is the consistency coefficient (with the dimension
PaUsn), n is the power law index (dimensionless), Eq. (4) reduces
to Newtonian law of viscosity for n¼ 1. The shear rate _γ (also
called second invariant) is defined as:

_γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
_γ : _γ

r
: ð5Þ

For the Cross model:

η¼ η T ; _γ
� �¼ η0 Tð Þ

1þ λ Tð Þ _γ� �1�n Tð Þ; ð6Þ

where η0 Tð Þ ¼ a1exp a2=T
� �

, λ Tð Þ ¼ b1exp b2=T
� �

and n Tð Þ ¼ c1exp
�c2=T

� �
.

Nomenclature

v velocity
p pressure
τ viscous stress tensor
_γ rate of deformation tensor
η viscosity
_γ shear rate
n power law index
T temperature
ρ density
Cp specific heat capacity
k thermal conductivity
Re Reynolds number Re¼ ρVref Lref

ηref
Pr Prandtl number Pr¼ ηref Cp

k

Pe0 Péclet number Pe0 ¼ ρCpLref Vref

k
Br Brinkman number Br¼ ηref Vref

2

k ΔTrefð Þ
Vref reference velocity
Lref reference length
ηref reference viscosity
ΔTref reference temperature difference
∇2 Laplacian
L, B linear elliptic partial differential operators
Ω computational domain
Γ boundary
N number of collocation nodes for global RBF scheme
NL number of local supporting nodes for local

RBF scheme
c shape parameter
α, αj weighting coefficients
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