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a b s t r a c t

In this study a mesh-free numerical model for simulating 3-D free-surface potential flows is established.
A time-marching scheme in Lagrangian aspect is chosen for the specification of boundary conditions on
the moving and deforming free surface while a local polynomial collocation method is applied for solving
the Laplace equation at each time step. This collocation method is employed because the partial deri-
vatives of the solution are calculated accurately. The trajectory of each free-surface node can thus be
predicted precisely due to the accurate estimation of the partial derivatives of velocity potential, which
represent components of the velocity vector at that specific node. The numerical model is applied to the
simulation of free surface waves by the liquid sloshing in rectangular, square and cylindrical swaying
tanks. Fairly good agreements are observed in the comparison of numerical results with experimental
data. Because the partial derivatives of the velocity components are accurately calculated, the pressure
distribution in the domain can also be acquired by solving the pressure Poisson equation separately.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Water wave problems are usually treated as potential flow
problems governed by the Laplace equation subjected to two
nonlinear free surface boundary conditions. Due to the deforma-
tion of the free surface, mesh re-generation is usually indis-
pensable if one uses a grid-based method to solve this kind of
problems. Mesh generation, which means construction of the
connectivity among the nodes, is a tedious task. Because potential
flows are governed by the Laplace equation, the Boundary Element
Method (BEM, also denominated as Boundary Integral Equation
Method, BIEM) is mostly employed to this kind of problems [1–7].

A mesh-free method, which is named as Method of Funda-
mental Solutions (MFS), was applied to solve the Laplace equation
in the fully nonlinear water wave problems [8–10]. When using
MFS, one has to place source points outside the domain. Because
the values of the fundamental solutions are just related to the
distances from the source points and collocation is only needed on
the boundaries, MFS could be regarded as a boundary type RBF
collocation method. Though MFS could be employed to fully
nonlinear water wave problems, its applicability is still limited
because numerical blow-up occurs when the free surface
approaches too close to the source points. The singular boundary

method (SBM) [11,12] which is regarded as a kind of modified MFS
might be an alternative for solving water wave problems.

A domain type RBF Collocation Method that guarantees the
accurate estimation of partial derivatives of the velocity potential
on the free surface was proposed in Ref. [13]. By using a Lagran-
gian time-marching scheme, the trajectories of the free surface
nodes can be precisely predicted. Both 2-D and 3-D liquid sloshing
in a rectangular water tank were simulated. However, the full
matrix formed in that method limits its applicability to further
large-scale problems. In Ref. [14,15], the 3-D model of Ref. [13] was
modified to 2-D for the investigation on the propagation and run-
up of nonlinear waves generated by landslides.

Besides treating water wave flows as potential flows, one could
also choose Navier–Stokes equation or Reynolds Averaged Navier–
Stokes equation models, such as models using Arbitrary Lagran-
gian–Eulerian method (ALE) [16] or Volume of Fluid method (VOF)
[17] to describe the free surface, or models treating the fluid as
stacks of separate particles [18,19]. Models using ALE or VOF are
grid-based while particle models in Ref. [18,19] are meshless.
Results of these models are more close to the real flow. However,
these models could be more time consuming and require more
computer memory storage.

Modifying the Finite Point Method (FPM) of Ref. [20,21], a local
polynomial collocation method for the purpose of solving general
partial differential equations was proposed [22]. It is a localized
meshless method thus matrix formed in the collocation process is
very sparse. In Ref. [13,23], it was suggested that at boundary
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nodes the governing equation is satisfied as well as boundary
conditions are could make the numerical results more accurate,
especially the partial derivatives around the boundary. Following
this, the method proposed in Ref. [22] becomes more robust than
conventional collocation methods. Adopting the time-marching
scheme for the free surface proposed in Ref. [13] and the local
polynomial collocation method proposed in Ref. [22], a numerical
model for the simulation of 2-D free surface potential flows was
developed [24]. The trajectories of the fluid particles in a swaying
tank and the fully nonlinear water wave on the free surface were
investigated. Another application of this numerical model was on
the study of solitary wave generation by a piston type wave
maker [25].

In this study, we extend the 2-D model [24,25] to 3-D. We also
make a small modification for the local polynomial collocation
method in Ref. [22] so the process of assembling the global matrix
is more straightforward. This numerical model is applied to the
simulation of free surface waves in the liquid sloshing of rectan-
gular, square and cylindrical swaying tanks.

2. The time marching scheme for simulating free-surface
potential flows

For inviscid incompressible fluids, the fluid velocity v!ðx; y; z; tÞ
can be expressed as the gradient of the velocity potential ϕ due to
the irrotationality.

v!¼ u i
!þv j

!þw k
!¼∇ϕ ð1Þ

in which ∇¼ ∂
∂x i
!þ ∂

∂y j
!þ ∂

∂z k
!

is the gradient operator. The flow is
governed by the Laplace equation.

∇2ϕ¼ 0 ð2Þ
where ∇2 ¼ ∂2

∂x2þ ∂2
∂y2þ ∂2

∂z2 is named as the Laplace operator. For free
surface flows in the gravity field, two boundary conditions are to
be satisfied on the free surface. They are

∇ϕ¼ dx
,

dt
; x
,
A the entire domain; including the free surface ð3Þ

Dϕ
Dt

¼ �gzþ1
2
∇ϕU∇ϕ; x

,
A the free surface ð4Þ

in which g is the gravity acceleration. These two equations are
the kinematic and dynamic boundary conditions respectively. Both
of them have been transformed onto the Lagrangian aspect. At a
fluid–solid interface, the no-flux boundary condition has to be
satisfied. That is

n
,
U∇ϕ¼ n

,
Uv
,
b; x

,
A the fluid�solid interface ð5Þ

where n! is the unit normal vector outward from the domain and

v!b ¼ ub i
!þvb j

!þwb k
!

is the velocity of the moving solid
boundary.

For solving this kind of time-dependent problems, the time
domain firstly has to be discretized. At each time step, the Laplace
equation needs to be solved once to obtain the velocity potential
in the entire domain thus to further determine the velocity.
Boundary positions are updated by the given motion of the solid
boundaries and the prediction from the time marching process of
the free-surface boundary. The second order central difference to
Eq. (4) was employed in Ref. [13].

ϕj
x
, ¼ x

,
j

� �ðnÞ
¼ ϕj

x
,¼ x

,
j

� �ðn�2Þ
þ2Δt �gzþ1

2
∇ϕU∇ϕ

� �
x
,¼ x

,
j

" #ðn�1Þ

ð6Þ

where x
,
j denotes the position of the jth node and this equation is

only valid in case the node is on the free surface. In this for-
mulation, the required data on the right-hand side at the nth time
step are already known. What one needs to do first is just to

determine the position of each traced ‘particle’, x
,ðnÞ
j . When the

velocity potential in the entire domain is obtained, the velocity at
each of the nodes whether inside the domain or on the boundaries
can be estimated accurately. Therefore, by the second-order finite
difference scheme in the time domain one can obtain the fol-
lowing formula from Eq. (3).

x
,ðnÞ
j ¼ x

,ðn�2Þ
j þ2Δtð∇ϕj

x
,¼ x

,
j

Þðn�1Þ ð7Þ

Here it should be noted that this equation is valid for all the
nodes. For better numerical stability, the Crank–Nicolson formula
can then be applied.

x
,
ðnÞ
j ¼ x

,
ðn�1Þ
j þΔt

2
ð∇ϕj

x
, ¼ x

,
j

ÞðnÞ þð∇ϕj
x
,¼ x

,
j

Þðn�1Þ
� �

ð8Þ

Note that there is no need to solve the Laplace equation again
because there is barely any difference whether the free-surface

velocity potential at x
,ðnÞ
j is predicted by using Eq. (7) or by using

Eq. (8).

3. Method for solving the governing equation

At each time step, the Laplace equation needs to be numerically
solved once. One could choose any numerical method to do this,
either grid-based or mesh-free. In this study the local polynomial
collocation method proposed in Ref. [22] is chosen for the sake we
need accurate partial derivatives of the velocity potential on the
free surface. This method was developed for solving general partial
2-D differential equations. In this paper, we extend it to 3-D. The
following gives a brief description of this method.

Consider the general 3-D linear second order PDE as

L ϕ
� �¼ c1ϕþc2

∂ϕ
∂xþc3

∂ϕ
∂yþc4

∂ϕ
∂z þc5

∂2ϕ
∂x2 þc6

∂2ϕ
∂y2

þc7
∂2ϕ
∂z2

þc8
∂2ϕ
∂x∂y

þc9
∂2ϕ
∂y∂z

þc10
∂2ϕ
∂z∂x

¼ S; x
,
AΩ ð9Þ

subjected to the boundary conditions

B ϕ
� �¼ q1ϕþq2

∂ϕ
∂x

þq3
∂ϕ
∂y

þq4
∂ϕ
∂z

¼ f ; x
,
AΓ ð10Þ

where Lf g and Bf g are both linear operators, Ω denotes the
domain, Γ denotes the boundary, and c1, c2, …, c10, q1, q2, …, q4, f ,
and S, are all functions of x, y, and z. When q1 is not zero but q2, …,
q4 are all zero, the boundary condition is Dirichlet type; on the
contrary, it is Neumann type. If q1, …, q4 are all non-zero, the
boundary is Robin type. One should keep in mind that Γ could be
composed of several patches and at each connection of two or
maybe three patches so c1, c2, …, c10, q1, q2, …, q4, and f could be
multi-valued. We express the boundary condition in this general
way for conciseness. Here we introduce a number nbc, which
indicates the number of boundary conditions to be satisfied at a
specific node. It should be noted that nbc is an integer greater than
or equal to zero. In case of nbc ¼ 0, only the governing equation is
to be satisfied. That means obviously indicates that x!j is inside the
domain. If nbcZ2, it obviously indicates that x!j rests on an edge
or at a corner.

In seeking the numerical solutions, the entire domain is dis-

tributed with N nodes as needed. At each specific node x
,
j, ϕ is
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