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a b s t r a c t

Based on the recently developed finite integration method (FIM) for solving one-dimensional partial
differential equations by using the trapezoidal rule for numerical quadrature, we improve in this paper
the FIM with an alternative extended Simpson's rule in which the Cotes and Lagrange formulas are used
to determine the first order integral matrix. The improved one-dimensional FIM is then further extended
to solve two-dimensional problems. Numerical comparison with the finite difference method and the
FIM (Trapezoidal rule) are performed by several one- and two-dimensional real application including the
Poisson type differential equations and plate bending problems. It has been shown that the newly
revised FIM has made significant improvement in terms of accuracy compare without much sacrifice on
the stability and efficiency.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Partial differential equations (PDEs) commonly appear in
mathematical modeling to describe a wide variety of physical
phenomena such as fluid and solid mechanics. The properties and
characteristics of the physical phenomena can then be understood
from the closed form solutions to these PDEs. However, under
various boundary conditions and real problem configuration, it is
very rare that these models can be solved in closed form solutions.
Due to the advancement of computational methods, numerical
approximations can usually be achieved inexpensively to give high
accuracy together with a reliable bound on the error between the
analytical solution and its numerical approximation. There are
many numerical techniques available for solving differential
equations [1–5] among which the finite difference method (FDM),
Finite Element Method (FEM) and Boundary Element Method
(BEM) are commonly used.

Recently, Wen et al. [6] and Li et al. [7,8] developed a new finite
integration method (FIM) for solving one- and two-dimensional
partial differential equations and successfully demonstrated its
applicability for solving nonlocal elasticity problems. It has been
shown that the FIM gives a much higher degree of accuracy than

the FDM and the Point Collocation Method (PCM). In this paper, an
improved FIM is developed by using an alternative extended
Simpson's rule, Cotes integral formula, and Lagrange formula for
solving one- and two-dimensional partial differential equations.
Similar to the FDM and the PCM, a finite number of points, known
as field points, are distributed in the computational domain. The
field points are generated either uniformly (grid) along the inde-
pendent coordinate or randomly distributed in the domain. The
integration matrix of the first order is obtained by direct integra-
tion with Simpson's rules, Cotes formula, and Lagrange formula.
Based on these first order integration matrices, the multi-layer
finite integration matrix can easily be obtained. To demonstrate
the accuracy and efficiency of the improved FIM, several one-
dimensional and two-dimensional numerical examples are given
and compared with the FDM and analytical solution.

2. Finite integration method for one dimension

2.1. Trapezoidal rule (TR)

A simple computational scheme for integration was introduced
in [6,7], which was called an Ordinary Linear Approach (OLA) as
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follows. Let

UðxkÞ ¼
Z xk

0
uðξÞdξffi

Xk
i ¼ 1

akiuðxiÞ: ð1Þ

For the most simple trapezoidal rule, the coefficients are

a1i ¼ 0;

aki ¼

0:5h; i¼ 1;
h i¼ 2;3; :::; k�1;
0:5h i¼ k;

0 i4k;

8>>><
>>>:

ð2Þ

where xi ¼ ði�1Þh;h¼ b=ðN�1Þ; i¼ 1;2; :::;N are nodal points in
[0, b], and x1 ¼ 0; xN ¼ b. Note that (1) can be written in matrix
form as

U¼ Au ð3Þ
where U¼ U1;U2; :::;UN½ �T , u¼ u1;u2; :::;uN½ �T ,

A¼ akið Þ ¼ h

0 0 0 0 0 0
1=2 1=2 0 0 0 0
1=2 1 1=2 0 0 0
1=2 1 1 1=2 0 0
::: ::: ::: ::: ::: :::

1=2 1 1 1 1 1=2

0
BBBBBBBBB@

1
CCCCCCCCCA

N�N

ð4Þ

is the first order integration matrix in which Ui ¼ UðxiÞ;ui ¼ uðxiÞ
denote the values of integration and the integral function,
respectively, at each node. The single-integral (1) can be extended
to a multi-integral for one-dimensional problems as follow:

Uð2ÞðxÞ ¼
Z x

0

Z ζ

0
uðξÞdξdζ; xA ½0; b�: ð5Þ

Applying the OLA technique again for the integral function Uð2ÞðxÞ,
we have

Uð2ÞðxkÞ ¼
Z xk

0

Z ζ

0
uðξÞdξdζffi

Xk
i ¼ 0

Xi

j ¼ 0

akiaijuðxiÞ ¼
Xk
i ¼ 0

að2Þki uðxiÞ: ð6Þ

From (3), the multi-integral (6) can be written in matrix form as

Uð2Þ ¼Að2Þu¼A2u ð7Þ
where

Að2Þ ¼AA¼ h2

0 0 0 0 0 0
1=4 1=4 0 0 0 0
3=4 1 1=4 0 0 0
5=4 2 1 1=4 0 0
::: ::: ::: ::: ::: :::

½1þ2ðN�2Þ�=4 N�2 N�3 ::: 1 1=4

0
BBBBBBBBB@

1
CCCCCCCCCA

N�N

ð8Þ
and the elements of matrix Að2Þ are given by [6,7]

að2Þ1i ¼ 0

að2Þki ¼

½1þ2ðk�2Þ�h2=4; i¼ 1;

ðk� iÞh2; i¼ 2;3; :::; k�1;

h2=4; i¼ k;

0; i4k:

8>>>><
>>>>:

ð9Þ

2.2. Alternative extended Simpson rule

The numerical accuracy of the first order integral matrix A can
be further improved by using the alternative extended Simpson's
rule. The simplest trapezoidal rule for the integration at the

second node x2 ¼ h is

Uðx2Þ ¼
Z h

0
uðxÞdx¼ h

1
2
u1þ

1
2
u2

� �
: ð10Þ

In order to improve the above integral accuracy, we consider
the three node Lagrange interpolation for u in (10), i.e.

uðxÞ ¼ ðx�x2Þðx�x3Þ
ðx1�x2Þðx1�x3Þ

u1þ
ðx�x1Þðx�x3Þ
ðx2�x1Þðx2�x3Þ

u2þ
ðx�x1Þðx�x2Þ
ðx3�x2Þðx3�x1Þ

u3:

ð11Þ
Substituting (11) into (10), we have

Uðx2Þ ¼
Z h

0
uðxÞdxffih

5
12

u1þ
2
3
u2�

1
12

u3

� �
: ð12Þ

By the Simpson integral rule and [9], we have

Uðx3Þ ¼
Z 2h

0
uðxÞdxffih

1
3
u1þ

4
3
u2þ

1
3
u3

� �
; ð13Þ

Uðx4Þ ¼
Z 3h

0
uðxÞdxffih

3
8
u1þ

9
8
u2þ

9
8
u3þ

3
8
u4

� �
ð14Þ

for nodes ir4. This extended formula of order 1=N3gives

UðxiÞ ¼
Z ði�1Þh

0
uðxÞdxffih

5
12

u1þ
13
12

u2þu3þu4þ :::ui�2þ
13
12

ui�1

�

þ 5
12

ui

�
ð15Þ

for i¼5, 6, …, Nþ1.
Thus, the coefficients in (1) are given as

a1i ¼ 0 i¼ 1;2; :::;N ð16aÞ

a21 ¼
h
2
; a22 ¼

h
2
; Simpson Ið Þ ð16bÞ

or

a21 ¼
5h
12

; a22 ¼
2h
3
; a23 ¼−

h
12

; Simpson IIð Þ ð16cÞ

a31 ¼
h
3
; a32 ¼

4h
3
; a33 ¼

h
3
; ð16dÞ

a41 ¼
3h
8
; a42 ¼

9h
8
; a43 ¼

9h
8
; a44 ¼

3h
8
: ð16eÞ

For all nodes i44, the alternative extended Simpson's rule is
represented as [9]:

ai1 ¼
5h
12

; ai2 ¼
13h
12

; ai3 ¼ h; :::; aiði�2Þ ¼ h; aiði�1Þ ¼
13h
12

; aii ¼
5h
12

ð16fÞ

Note that the first order integral matrix A using the extended
Simpson's rule is diagonal except the second row for Simpson II. In
addition, the multi-integral formula (7) is still valid for the
improved integration matrix using the extended Simpson's rule,
i.e. Að2Þ ¼ A2. To satisfy the boundary conditions, we may need
higher order derivatives which can be achieved by considering the
four node interpolation at the left-end point x1 ¼ 0 to obtain the
first and second orders derivatives as follows

du
dx x ¼ 0 ¼ ðx2x3 þx3x4 þx4x2Þ

ðx1 �x2Þðx1 �x3Þðx1 �x4Þu1þ ðx1x3 þx3x4 þx4x1Þ
ðx2 �x3Þðx2 �x4Þðx3 �x1Þu2þ

���
ðx1x2þx2x4þx4x1Þ

ðx3�x4Þðx3�x1Þðx3�x2Þ
u3þ

ðx1x2þx2x3þx3x1Þ
ðx4�x1Þðx4�x2Þðx4�x3Þ

u4

¼ �11
6h

u1þ
3
h
u2�

3
2h

u3þ
1
3h

u4; ð17Þ
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