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a b s t r a c t

The paper deals with the problem of the peristaltic flow of Newtonian fluid in two-dimensional channel.
The problem is considered using stream function and vorticity formulation. The high-order iterative
formulation is used in order to transform the nonlinear problem into a hierarchy of inhomogeneous
problems which are solved using the method of fundamental solutions and the radial basis functions. The
first approximation is obtained for Reynolds number Re¼ 0. In the paper results are presented for dif-
ferent values of Reynolds number and flow rate.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The term peristalsis comes from Greek word peristaltikos,
which means clasping and compressing. The peristaltic pumping is
understood as a transport of fluid induced by progressive wave of
contraction along the distensible duct. The peristaltic flow exists in
many parts of our body such as the gastrointestinal tract, the
ureter, the lymphatic vessels and the small blood vessels. Peri-
staltic pumps are also used in industry (to transport corrosive or
aggressive fluids) and medicine (used for example for dialysis). A
wide range of applications of peristaltic flow phenomena requires
a good theoretical basis. Therefore the existing literature on
numerical study of peristaltic flow is quite extensive. There is a
wide range of models which were used in the literature to study
the peristaltic flow.

Many various models of the considered channel or tube were
used to the numerical analysis of the peristaltic flow. In many
papers the flow was considered in the plane symmetric channel.
Some authors concerned the flow in the plane asymmetric chan-
nel [1–8]. The peristaltic flow was considered also in the plane
incurved channel [9–13]. The peristaltic flow in the axisymmetric
channel was considered by some authors [14–18]. Furthermore in
some papers the flow was analyzed in the axisymmetric channel
with endoscope [19–23]. Akbar and Nadeem investigated the
peristaltic flow in the axisymmetric diverging tube [24]. Also the

influence of different shapes of the peristaltic wave (sinusoidal,
square, trapezoidal, triangular) was investigated [15,22,24].
Walker and Shelley made shape optimization of the peristaltic
wave using sequential quadratic programming [25]. The flow in
the channel with compliant walls was also investigated in some
papers [11,12,26–28].

Various models of the fluid were used in the publications on
peristaltic flow. Most authors used viscous, incompressible model
of the fluid because of its simplicity. However in recent times more
and more attention received the analysis of the non-Newtonian
fluid. In papers on the peristaltic flow some authors used Jeffrey
fluid model [2,6,22,29,30]. The Williamson fluid model was used
in [1,7,31]. In existing literature many another models of fluid
were used: Johnson–Segalman fluid [13], Eyring–Powell fluid [24],
pseudoplastic fluid [15], Maxwell fluid [32,33], third grade fluid
[9,11], fourth grade fluid [34], Carreau fluid [22], Oldroy-B fluid
[18], micropolar fluid [35], hyperbolic tangent fluid [21], nanofluid
[26], and biofluid with variable viscosity [21]. Some additional
assumptions which make the governing equations more complex
also appear in the literature on the numerical analysis of the
peristaltic flow. The peristaltic flow through porus medium was
considered in [8,28,30,36]. Some authors investigated the flow
with heat and mass transfer [1,4,8,11,12,20,22,30,37,38]. The
influence of external magnetic field on peristaltic flow was ana-
lyzed in [1,2,13,14,19,20,22,28,34,35,39,40].

In the publications which deal with the numerical study of
peristaltic flow various methods were used in order to solve the
governing equation of the problem. Most of authors used the
perturbation method, for example in [41,42] or analytic solution
under certain assumptions, for example in [43–47]. The finite
difference method was used in [48]. Pozrikidis obtained solution
using the boundary integral method [49]. Some authors used the
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finite elements method [50,51]. Spectral methods were used in
[52,53]. To the best of our knowledge the literature on numerical
study of peristaltic flow papers in which the method of funda-
mental solutions (MFS) was used does not exist.

The MFS belongs to the meshless methods group. The method
can be used to solve problems in which the fundamental solutions
are known. The approximate solution is a linear combination of
fundamental solutions (source function). The fundamental solu-
tion is a function of distance the point inside the considered region
from the source point. The source points are located on a pseudo-
boundary outside the region. Boundary of the considered region
and the pseudo-boundary does not have any common points. The
differential equation is satisfied exactly by fundamental solution at
any point in the considered region ensuring that also the linear
combination of fundamental solutions (the approximate solution)
fulfills the governing equation at any point in the region. The
boundary conditions are fulfilled approximately by the approx-
imate solution using the boundary collocation method. The MFS
was proposed by Georgian scientists [54]. The numerical imple-
mentation of MFS was presented by [55].

As yet application of MFS for solution of non-linear boundary
value problems (to which Navier–Stokes equations belong) really
are not numerous. For the best knowledge of authors the first
attempt of MFS's application for non-linear Poisson problem was
given in [56]. In this paper the particular solution was expressed
by integral through considered region and as the sum of right-
hand side function times fundamental solution. Then the Picard
iteration method was used. In [57–61] original non-linear Poisson-
type differential equation in two-dimensional domain is converted
to sequence of linear Poisson equations. Then, the radial basis
functions (RBF) and the MFS are used respectively to construct the
expression of particular and homogeneous solution on each
iteration step. This procedure was applied for some more com-
plicated problems of applied mechanics, namely large deflection of
plates [62], isothermal gas flow in porous medium [63], thermo-
elasticity of functionally graded material [64], determination of
effective thermal conductivity of unidirectional composites with
linearly temperature dependent conductivity of constituents [65],
two-dimensional non-linear elasticity [66], elasto-plastic torsion
of prismatic rods [67], and some inverse problems [68,69].

The steady-state heat conduction with temperature-dependent
thermal conductivity and mixed boundary conditions involving
radiation was investigated using MFS in [70]. Authors employed
the classical Kirchhoff transformation. In this way the governing
equation was transformed to Laplace equation. After this the only
nonlinearity in new boundary value problem was in boundary
conditions. After collocation of these boundary conditions the
non-linear system of algebraic equations was solved by standard
procedure. Another problem with linear governing equation and
non-linear boundary conditions for which MFS was applied is
water waves problem [71–75].

In papers [76,77] authors proposed the linearization scheme for
the nonhomogeneous term in terms of the dependent variable and
differencing in time (first or second derivative with respect time)
resulting in Helmholtz-type equation whose fundamental solu-
tions are available. Consequently the particular solutions are no
longer needed and MFS can be directly applied to linearized
equation. The perturbation technique was combined with the MFS
to solve nonlinear Poisson-type problem in papers [78,79]. Due to
this the nonlinear problem is transformed into a sequence of
nonhomogeneous linear ones which can be solved by MFS and
RBF. In papers [80,81] the homotopy analysis method was com-
bined with the MFS for solution of non-linear Poisson type pro-
blem. For the best knowledge of authors the first trial of MFS's
application for Navier–Stokes equations was given in paper [82].
Using operator-splitting scheme the unsteady Navier–Stokes

equations were transformed into simple advection–diffusion and
Poisson equations. The resultant velocity advection–diffusion
equations and the pressure Poisson equation were then calculated
using the MFS together with the Eulerian–Lagrangian method and
the method of particular solutions.

In the paper we considered the peristaltic flow of Newtonian
fluid in plane symmetric channel. We used the high-order iterative
algorithm proposed by Zhao and Liao [83]. They solved the
Navier–Stokes equations using the algorithm and the boundary
element method. In the paper we propose to use the same algo-
rithm in combination with the MFS and the RBF in order to solve
the nonlinear boundary value problem. The solution was obtained
using the method of particular solution. On each iteration step the
general solution was obtained using MFS. The RBF interpolation
was used for getting the particular solution.

2. Geometry of the considered problem

Example of the two-dimensional channel for the peristaltic
flow is depicted in Fig. 1.

The walls of the channel can be described in two coordinates
systems. The first one is stationary fixed system, called the
laboratory frame x0; y0ð Þ. The position of the peristaltic walls
described in this coordinates system is time-dependent and
represented by:

y0 x0; tð Þ ¼ 7 h�ε � cos 2π x0 �ctð Þ
λ

� �� �
; ð1Þ

where h denotes average distance between the wall and the
symmetry axis of the channel, ε is the amplitude of the peristaltic
wall, c is the velocity of the peristaltic wave and λ is the length of
the peristaltic wave. The peristaltic flow described in the labora-
tory frame is unsteady.

The second coordinates system x; yð Þ (called the wave frame)
moves with the same speed as the peristaltic wave c. Thus the
walls of the peristaltic wave observed in the wave frame can be
defined as:

y xð Þ ¼ 7 h�ε � cos 2πx
λ

� �� �
: ð2Þ

The main advantage of this system is that the peristaltic flow
observed in the wave frame can be treated as steady because
positions of the peristaltic walls are fixed. Equations which
described the transformations between the laboratory frame and
the wave frame are defined as follows:

x¼ x0 �ct; y¼ y0: ð3Þ
After introducing dimensionless variables:

X ¼ x
λ
; Y ¼ y

λ
; E¼ ε

λ
; H ¼ h

λ
; ð4Þ

Eq. (2) takes the following form:

Y Xð Þ ¼ 7 H�E � cos 2πXð Þ½ �: ð5Þ
Finally the considered region Ω with characteristic dimen-

sionless variables is depicted in Fig. 2.

Fig. 1. Geometry of the peristaltic channel.
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