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a b s t r a c t

This paper deals with the solution of the Euler–Bernoulli equation for dynamic bending of beams by the
time-dependent Boundary Element Method formulation. Initially, an overview of the Euler–Bernoulli
beam theory is presented. Next, the time-dependent fundamental solution is introduced and some of its
properties are discussed. In the sequence, the integral formulation, obtained through a weighted resi-
duals technique, is presented. Three different numerical implementations are proposed. Finally, the
numerical results are compared with the available analytical solutions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of the classical theory of beams, or the
Euler–Bernoulli beam theory, the reader can find, for instance,
the works by Providakis and Beskos [1], Schanz [2], and
de Langre et al. [3].

The first of these works is concerned with free and forced
flexural vibrations, in which the forced vibration problem is trea-
ted with the aid of the Laplace transform and the response is
obtained by a numerical inversion of the transformed solution.

In the second work a rather interesting method, called Con-
volution Quadrature Method, proposed by Lubich [4,5] to perform
the convolution in the time-dependent integral equation, is
employed. The main characteristics of this method, which can be
applied to problems where time-domain fundamental solutions
are not available, are (i) the use of fundamental solutions in the
Laplace domain and (ii) the numerical approximation of the time
convolution integrals, presented in the time-dependent Boundary
Element Method (TD-BEM) equations, by a quadrature formula
based on a linear method of multiple steps, which provides direct
solution in the time-domain.

The third work presents a TD-BEM formulation, which is very
interesting from the mathematical point of view. The fundamental
solution for this formulation can be found in Graff [6] and

Campbell and Foster [7]. One of the conclusions found in reference
[3] is transcribed here “It is nevertheless clear that the Laplace
transform domain method is the most adequate for the solution of
linear problems of flexural vibrations of beams”.

This conclusion sounded as a challenge to the authors: if others
TD-BEM formulations were successfully developed for other types
of problems, e.g., Wrobel [8], Mansur [9], why the same would not
be possible for the dynamic analysis of Euler–Bernoulli beams?
Bearing this in mind, this paper is concerned with the solution of
the Euler–Bernoulli equation for dynamic bending of beams by the
TD-BEM formulation. In other words, the motivation was to
develop a TD-BEM formulation capable of providing accurate
results and, consequently, of encouraging further developments.
These include beams over elastic basis, continuous beams, and
Timoshenko beams.

Initially an overview of the Euler–Bernoulli beam theory is
presented together with the analytical solutions used for com-
parison with the numerical values provided by the proposed TD-
BEM formulation. The time-dependent fundamental solution is
then introduced and some of its properties are discussed. In the
sequence, the basic TD-BEM equation, obtained by following a
weighted residuals approach is presented. Note that the problem
is one-dimensional; consequently, the boundary is constituted
only by the extreme nodes of the beam. As the domain is the
length of the beam, say L, one has 0rxrL. As the differential
equation that governs the problem is non-homogeneous, due to
the presence of the loading term, a double integral in space and
time, containing this term, appears in the BEM equations. The
others integrals are time integrals, evaluated from t ¼ t0 until the
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present time. The beams considered are named according to their
boundary conditions as pinned–pinned (PP), clamped–pinned
(CP), clamped–clamped (CC), and clamped–free (CF). Four types of
loading are considered: the first one is assumed to be linearly
distributed along the domain and to act continuously in time (DD);
the second type consists of a concentrated load acting con-
tinuously in time (CD); the third and the fourth types are short
duration loadings; the former is distributed along the domain
(DSD) and the later is concentrated (CSD).

Good agreement is observed between the numerical and ana-
lytical results, which are presented before the final conclusions.
The results for the bending moments and shear forces at internal
points are also presented, as these quantities play a fundamental
role in the dimensioning of concrete and steel beams.

For problems with non-homogeneous initial conditions, not
taken into account here, all the domain or, at least, part of it, must
be discretized with cells, as a domain integral containing the non-
null initial displacements and rotations appear in the BEM integral
equations. Such a discretization can be carried out by employing
internal cells, treated as isogeometric boundary elements (see, for
instance, [10]).

An interesting extension of the present work could be that
based on the assumption of functionally graded materials (see, for
instance, [11–13]). In this case, the integral equations would dis-
play a domain integral containing the longitudinal elasticity
modulus. The same would occur under the assumption of variable
transverse section. In general, for variable elasticity modulus and/
or moment of inertia, domain integrals appear in the formulation.

2. Euler–Bernoulli beam theory and BEM formulation

Dynamic bending problems of uniform slender beams are
governed by the classical Euler–Bernoulli equation

EI
∂4u
∂x4

þρA
∂2u
∂t2

¼ f ðx; tÞ; ð1Þ

where uðx; tÞ is the vertical deflection of the beam, f ðx; tÞ is the
applied external loading, EI is the flexural rigidity of the beam, ρ is
the density of the material, A is the cross-sectional area, L is the
length of the beam, x is the spatial variable, and t denotes time.
Fig. 1 shows an schematic layout of the beam under consideration.

Dividing Eq. (1) by ρA and defining c¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEIÞ=ðρAÞ

p
one gets the

expression

c2
∂4u
∂x4

þ∂2u
∂t2

¼ f ðx; tÞ
ρA

; ð2Þ

which is the governing equation adopted in this work.
From uðx; tÞ the following quantities are defined:

ϕðx; tÞ ¼ ∂u
∂x

; Mðx; tÞ ¼ �EI
∂2u
∂x2

;

Q ðx; tÞ ¼ �EI
∂3u
∂x3

; vðx; tÞ ¼ ∂u
∂t

ð3Þ

called, respectively, rotation, bending moment, shear force, and
velocity.

The problem presents four boundary conditions (two at x¼ 0
and two at x¼ L) and two initial conditions. The boundary con-
ditions are dependent on the beam type under consideration and
are classified as essential boundary conditions, when u or ϕ are
prescribed, or natural boundary conditions, when M or Q are
prescribed. The initial conditions, conversely, are always of the
same type, namely, the values of u and v prescribed at time t ¼ t0.

The analytical solutions of Eq. (2), for the beams considered in
this work, can be found, for instance, in Rao [14]. The reader is
referred to Sheehan and Debnath [15] for an interesting discussion
concerning the theory of the transient Euler–Bernoulli beam on
elastic foundation, taking into account the effects of linear
damping and axial loading. Another interesting work was pre-
sented by Chen et al. [16], which deals with Rayleigh damped
Euler–Bernoulli beams subjected to multi-support motion.

The fundamental solution for the problem is the function un

that satisfies the equation

c2
∂4un

∂x4
þ∂2un

∂t2
¼ δðx�ξÞδðt�τÞ; ð4Þ

where δ is the Dirac delta function, and corresponds to the
deflection of a beam of infinite length measured at a field point x
in a time t when an impulsive concentrated load is applied at a
source point ξ in a time τ. Such function is given by

un ¼ 1
c

r
2

S
rffiffiffiffiffiffiffiffiffi
2πa

p
� �

�C
rffiffiffiffiffiffiffiffiffi
2πa

p
� �� �

þ
ffiffiffi
a

p
ffiffiffiffiffiffi
2π

p sin
r2

4a

� �
þ cos

r2

4a

� �� �� �
;

ð5Þ

where r¼ x�ξ
		 		 and a¼ cðt�τÞ.

The solution of Eq. (4) can be found in de Langre et al. [3],
which is, to the best of the authors' knowledge, the first BEM
formulation which is based on the use of this fundamental solu-
tion. However, de Langre et al. [3] did not succeed in obtaining
accurate results and concluded that the Laplace transform was the
most adequate method for the solution of linear problems of
flexural vibrations of beams. The fundamental solution can also be
found in Graff [6], Campbell and Foster [7], and Kythe [17].

The functions S and C, called Fresnel integrals, are defined by

SðzÞ ¼
Z z

0
sin

π
2
ζ2


 �
dζ; and CðzÞ ¼

Z z

0
cos

π
2
ζ2


 �
dζ: ð6Þ

Such integrals have no analytical solution and are evaluated
numerically using the algorithm presented by Boersma [18].

The function un has the following properties:

� reciprocity: unðx; t;ξ; τÞ ¼ unðξ; �τ; x; �tÞ;
� time translation: unðx; t; ξ; τÞ ¼ unðx; tþΔt; ξ; τþΔtÞ.

Regarding the characteristics of un, it is worth mentioning that
un does not present singularity when r¼ 0, though this kind of
singularity always occurs in the fundamental solutions of 2D and
3D problems. In a similar fashion, the fundamental solutions for
Timoshenko beams listed in Carrer et al. [19] are also not singular
when r¼ 0.

From Eq. (5) one gets

ϕn ¼ þ1
c

1
2

S
rffiffiffiffiffiffiffiffiffi
2πa

p
� �

�C
rffiffiffiffiffiffiffiffiffi
2πa

p
� �� �� �

∂r
∂x

� �
; ð7Þ

Mn ¼ �EI
c

1
2

ffiffiffiffiffiffiffiffiffi
2πa

p sin
r2

4a

� �
� cos

r2

4a

� �� �� �
∂r
∂x

� �2

; ð8Þ
Fig. 1. Schematic layout of the beam under consideration.
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