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a b s t r a c t

The exponential transformation is an efficient technique for the accurate numerical evaluation of nearly
singular integrals which arise in the boundary element method (BEM). It was shown that this trans-
formation could improve the accuracy of evaluating such integrals by several orders of magnitude. Here,
this transformation is extended in a more flexible fashion to allow the evaluation of nearly singular
integrals which arise in general anisotropic BEM formulation, with a high degree of accuracy. A major
advantage of the new method is its ease of implementation and applicability to a wide class of integrals.
Three benchmark test integrals, ranging from nearly weakly, nearly strongly and nearly hyper-strongly
singular integrals, are well studied to demonstrate the accuracy and efficiency of the proposed method.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

An important consideration when implementing the boundary
element method (BEM) is the accurate and efficient evaluation of
nearly singular boundary element integrals [1–4]. These integrals
are nearly singular when the distance between the calculation
point and the element of integration becomes very small and, in
this situation, the traditional Gaussian quadrature cannot be used
due to a lack of efficiency and accuracy. Such problems are of
particular interest in many engineering applications of the BEM,
such as the study of thin structures [5,6], contact problems [7],
sensitivity problems [8] and displacement around open crack tips
[9,10]. These applications involve complex geometries and, in
addition, the numerical method used must be able to cope with
the fact that the integrand develops a sharp peak as the calculation
point moves closer to the element.

Tremendous effort has been devoted to deriving convenient
integral forms or sophisticated computational techniques to deal
with such problems. The methods developed so far include, but
are not limited to, the method of the element subdivision [11–13],
analytical or semi-analytical methods [14–17], and various coor-
dinate transformations [18–25]. Impressive results obtained from
these techniques have been demonstrated on various examples.
Despite these great achievements, it is worth noting that almost all

the existing methods share the feature of evaluating nearly sin-
gular integrals that only exist in the isotropic BEM formulations. To
date, very few studies for such problems arising in anisotropic
problems have been reported in the BEM community [26].

This paper focuses on a recent published technique, called the
exponential transformation [27]. The key idea of this method is to
use an exponential function to remove or smooth out the near
singularities of the integrands before conventional Gaussian
quadrature is applied. It was shown that this transformation is
easy to implement and could improve the accuracy of evaluating
nearly singular integrals by several orders of magnitude, compared
with conventional Gaussian quadrature. However, as mentioned
above, the method was tailored to isotropic problems and cannot
be used to general anisotropic problems with it’s current form.
This paper presents an extension of this method to the evaluation
of nearly singular integrals arising in general anisotropic BEM
formulations. The new method proposed here is applicable to
high-order geometry elements and inherits the merits of the ori-
ginal one of being high accurate, mathematically simple and easy-
to-program.

The outline of the rest of the paper is as follows. Section 2
describes the nearly singular integrals which arise in the general
anisotropic BEM formulations. The exponential transformation
and its numerical implementation are introduced in Sections 3 and
4. Three benchmark examples that are commonly encountered in
the applications of the BEM are examined in Section 5. Finally, the
conclusions and remarks are provided in Section 6.
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2. The nearly singular integrals in the BEM

Consider a 2D anisotropic medium in an open bounded domain
Ω, and assume that Ω is bounded by a surface Γ which may
consist of several segments, each being sufficiently smooth in the
sense of Liapunov. We also assume that the boundary consists of
two parts, Γ ¼Γ1 [ Γ2, where Γ1;Γ2a∅ and Γ1 \ Γ2 ¼∅. In this
study, we refer to anisotropic steady heat conduction applications
in the absence of inner heat sources. Hence the function uðxÞ,
which denotes the temperature distribution in Ω, satisfies the
equation

kij
∂2uðxÞ
∂xi∂xj

¼ 0; xAΩ; ði; j¼ 1;2Þ; ð1Þ

subject to the boundary conditions

uðxÞ ¼ uðxÞ for xAΓ1; ð2Þ

qðxÞ ¼ � K∇uðxÞð ÞUnðxÞ ¼ �kij
∂uðxÞ
∂xj

niðxÞ ¼ qðxÞ for xAΓ2; ð3Þ

where kij; i; j¼ 1;2 are the thermal conductivity coefficients.
Kij
� �

i;j ¼ 1;2 is assumed to be symmetric and positive-definite so
that the partial differential Eq. (1) is elliptic. In addition n denotes
the outward normal, the barred quantities uðxÞ and qðxÞ indicate
the measured values of temperature and flux along the boundary.
K ¼ kij

� �
is the thermal conductivity tensor. The customary stan-

dard Cartesian notation for summation over repeated subscripts is
employed in this paper. From thermodynamic considerations and
Onsager’s reciprocity relation, the conductivity coefficients kij
must satisfy

k11k22�k21240: ð4Þ
In the boundary element method, the solution of Eq. (1) can be

expressed by the following integral representation

CðyÞuðyÞ ¼
Z
Γ
u�ðx; yÞqðxÞdΓðxÞ�

Z
Γ

∂u�ðx; yÞ
∂nx

uðxÞdΓðxÞ; ð5Þ

where x and y are the source and calculation points, respectively.
CðyÞ represents a coefficient according to the location of the cal-
culation point and the geometry of the boundary. u�ðx; yÞ stands
for the fundamental solutions of anisotropic potential problems
expressed as follows

u�ðx; yÞ ¼ � 1

2π
ffiffiffiffiffiffiffiffi
kij
�� ��q ln rðx; yÞ; ð6Þ

where kij
�� �� denotes the determinant of kij, rðx; yÞ is the distance

between the source and calculation points. Noting that

t11 t12
t12 t22

 !
¼

k11 k12
k12 k22

 !�1

¼ 1
kij
�� �� k22 �k12

�k12 k11

 !
; ð7Þ

the distance function rðx; yÞ can be expressed as

rðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tijðxi�yiÞðxj�yjÞ

q
; ði; j¼ 1;2Þ: ð8Þ

An implementation of the BEM requires the accurate evaluation
of the following integrals

I1 ¼
Z 1

�1
f ðξÞlog rðξÞdξ; ð9Þ

I2 ¼
Z 1

�1
f ðξÞ 1

r2αðξÞdξ; α40; ð10Þ

where ξ is the local intrinsic coordinate, the function f ðξÞ denotes
a low-order polynomial which may consist of the Jacobian of the
transformation from some arbitrarily curved element Γ to line
interval [�1,1], shape functions used to interpolate the physical
solution and/or the termwhich arises from taking the derivative of
the boundary element kernel.

When the calculation point is far from the boundary element
under consideration, a straightforward application of Gaussian
quadrature suffices to evaluate such integrals. When the calcula-
tion point is on the integral element, the integrand becomes sin-
gular and many direct and indirect algorithms have been devel-
oped and used successfully [28,29].

A class of integrals which lies between these two extremes is
that of the nearly singular integrals. Here, the calculation point is
close to, but not on, the element and the integrals, theoretically,
are regular since the values of their integrands remain finite at all
points. However, instead of remaining flat, the magnitude of the
integrand may be quite large as the calculation point approaching
towards the integral element. The evaluation of such integrals
faces considerable difficulties because neither the conventional
Gaussian integration nor the methods designed for singular inte-
grals are applicable here.

For nearly singular integrals, when the geometry is approxi-
mated using linear element, the distance function r2 can be
expressed as r2ðξÞ ¼ ξ�a

� �2þb2, where the parameters a
aA �1;1½ �ð Þ and b b40ð Þ represent the position of the nearly sin-
gular point and the shortest distance to the element [20,26],
respectively, as shown in Fig. 1. In this case, both integrals I1 and I2,
as shown in Table 1, can be evaluated analytically using various
exact integration methods [14,16,30–32]. Detailed discussion of
such issues is outside the scope of this paper. When the geometry
is approximated using high-order geometry element (usually of
second order) [26,33], the distance function r2 has the form of
r2ðξÞ ¼ ξ�a

� �2gðξÞþb2, where gðξÞ40 is a well-behaved function
and the parameters a and b defined above still remain the same. In
this case, the Jacobian of the integral is not a constant but a non-
rational function, making exact integration difficult. Nevertheless,
other numerical techniques should be developed for their eva-
luation. This is one of the purposes of this paper.

Fig. 1. Geometry of a parabolic boundary element.
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