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a b s t r a c t

A scheme for electromagnetic scattering analysis of perfect electric conducting (PEC) objects using
nonconformal meshes is developed in this paper. The difference of the integral operators for the electric
field integral equation (EFIE) and the magnetic field integral equation (MFIE) are analyzed in detail. It is
shown theoretically that basis functions used to expand the surface currents for the MFIE may not
necessarily be divergence-conforming. The nonconformal meshes and monopolar n� RWG basis func-
tions are used together to solve the MFIE. Details for the implementation of the proposed method are
presented. The method is verified through the numerical results for electromagnetic scattering analysis
from several PEC objects. It is shown that this method is a suitable choice for using nonconformal meshes
when solving electromagnetic scattering problems with the MFIE.

& 2016 Published by Elsevier Ltd.

1. Introduction

To solve electromagnetic scattering problem of three-
dimensional perfect electric conducting (PEC) objects using
method of moments (MoM), the surface of the target in analysis
should be firstly discretized with suitable elements. This is a vital
step for successful analysis of electromagnetic scattering pro-
blems. To model arbitrarily shaped scatterer, triangular elements
and the Rao-Wilton-Glisson (RWG) [1] basis function defined on a
pair of triangular elements have been used widely in the literature
[2–7] since it was proposed in [1]. The RWG function keeps the
continuity of the normal component of the expanded electric
currents. Thus, to use this kind of basis function correctly, neigh-
boring triangular elements should share one common edge and
two common nodes. This means that conformal triangular meshes
must be used to support the definition of the RWG functions. For
objects with regular shapes, commercial software can be used to
generate meshes automatically. However, for some complicated
structures with tiny parts or with geometric discontinuities, the
generation of meshes with high quality is still a tedious and time-
consuming process. For multiscale problems, the electric size of
different parts of a complicated object may differ greatly. When
conforming meshes are used to discretize the whole object, some

parts may be discretized with too dense mesh which makes the
total number of unknowns too large.

To deal with the former mentioned problems caused by the use
of conformal meshes, several different techniques are proposed in
literature. In [8], a novel meshless scheme by applying the Green's
theorem to surface integral equations with flat integral domain is
developed. In [9], a framework that permits seamless inclusion of
multiple functions within the approximation space and applicable
to nonconformal tessellations is proposed. However, both methods
in [8,9] need special technique to deal with the hyper-singular
integrals. Two other methods are proposed in [10,11] to deal with
the superfluous radiation of the accumulated charges on bound-
aries of elements when nonconformal meshes are used to the
combined field integral equation (CFIE) and electric field integral
equation (EFIE) respectively. The method used in [10] is a dis-
continuous Galerkin surface integral equation method and it
allows the use of square-integrable basis and test functions
without any considerations of continuity requirement across ele-
ment boundaries. In [11], the authors use a ‘even-surface odd-
volumetric’ monopolar RWG set discretization of the EFIE. Besides,
a volumetric testing over a set of tetrahedral elements are
implemented to easy the calculation of the hyper singular integral.

In [10,11], the authors select the monopolar RWG functions as
basis functions. However, when nonconformal meshes are used,
any suitable basis functions defined on one element can be used as
basis functions and the monopolar RWG set is not the only choice.
In fact, in a former paper [12], it has been shown that monopolar
n� RWG set can also be used to the MFIE. However, only con-
formal meshes have been used in that paper. It should be noticed
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that the monopolar RWG or monopolar n� RWG basis functions,
or even the standard Galerkin RWG discretization, do not lead to a
conforming discretization strategy for the MFIE [13,14]. Conse-
quently, these techniques do not necessarily guarantee con-
vergence of the solution in the norm of the numerical solution
space. In this paper, we study the use of the monopolar n� RWG
set to the magnetic field integral equation (MFIE) using non-
conformal meshes. Besides, although basis functions which do not
keep the continuity of the normal component of the equivalent
surface electric currents have been used to the MFIE in [12,15,16],
it has not been shown why these kinds of basis functions can be
used to the MFIE since the normal component of the surface
electric currents should be continuous in the EFIE. An explanation
will be given to this phenomenon in this paper. Based on this
explanation, a nonconformal scheme of the MFIE using non-
conformal meshes and monopolar n� RWG set are developed.
Numerical results are also presented to validate the proposed
nonconformal scheme.

2. Mathematical constraints of integral operator on the choice
of basis functions

For the analysis of electromagnetic scattering problems using
integral equation method, the mathematical property of the
integral operator imposed on the equivalent electric currents plays
an important role in the choice of the basis functions. The basis
functions used in MoM should be consistent with the corre-
sponding mathematical constraints inherited from the integral
equation. In this section, we analyze the different mathematical
constraints of the EFIE and MFIE integral operators on the the
surface electric currents and explain why basis functions which do
not impose normal continuity between elements can be used to
discretize the MFIE.

2.1. EFIE and MFIE formulations

For electromagnetic scattering from PEC objects, the electric
field integral equation (EFIE) can be achieved from the imposition
of the electric field boundary condition on the surface of a PEC
body. If the surface of the PEC objects under analysis is S and the
incident and scattered electric fields are respectively of EiðrÞ and
EsðrÞ, then the EFIE can be written as

EsðrÞj tan ¼ �EiðrÞj tan ð1Þ
By the use of the Green's function in free space Gðr; r0Þ and the

surface equivalent electric current JsðrÞ, the scattered fields EsðrÞ
can be further expressed as

EsðrÞ ¼
ZZ

S
½jωμJsðr0ÞGðr; r0Þ�

j
ωε

ð∇0 UJsðr0ÞÞ∇0Gðr; r0Þ�ds0 ð2Þ

In (2), ω is the working angular frequency and μ and ε are
respectively the permittivity and permeability of free space.

Similarly, the MFIE arises from the imposition of the magnetic
field boundary condition over the boundary surface S around a PEC
body. It can be written as

JsðrÞ ¼ nðrÞ �HðrÞ ð3Þ
which can be further expressed as

nðrÞ �HiðrÞ ¼ 1
2
JsðrÞ�nðrÞ � p:v:

ZZ
S
Jsðr0Þ � ∇0Gðr; r0Þds0 ð4Þ

by expressing the scattered magnetic fields HsðrÞ through the use
of the Green's function and the surface currents JsðrÞ. In (3), HðrÞ is
the total magnetic field and nðrÞ is the unit normal vector of the
surface S. In (4), HiðrÞ is the incident magnetic field.

2.2. Choice of basis functions for EFIE and MFIE

Although the same equivalent surface electric current JsðrÞ
appears in the EFIE and the MFIE, basis functions used to discretize
the corresponding surface equivalent electric currents JsðrÞ may be
different. This has been observed in many literatures. In [1], it is
proposed that the normal component of the equivalent electric
currents JsðrÞ should be continuous across the edges between
neighboring elements and the divergence-conforming RWG basis
functions were used to expand the equivalent electric currents Jsð
rÞ in the EFIE. In [3,7], the same basis functions are also used to the
MFIE. However, it is shown in [12] that the monopolar RWG basis
functions as well as the curl-conforming basis functions in [15] can
also be used to expand JsðrÞ in the MFIE. The monopolar RWG basis
function is only defined on a single triangular element and both
the normal and the tangential component of the surface currents
are not continuous between neighboring elements. The curl-
conforming basis functions only guarantee the continuity of the
tangential component of the surface currents. These two kinds of
basis functions do not guarantee the continuity of the normal
component of the equivalent electric currents. In fact, the RCS
results of the MFIE resulted from the use of these two kinds of
basis functions are even much better than those using the RWG
basis functions. However, although the numerical results of the
MFIE using none divergence-conforming basis functions are
shown in [12,15], no any explanation has been given to why these
kinds of basis functions can be used to expand the surface currents
JsðrÞ in the MFIE.

It can be seen from the EFIE in (2) that both the equivalent
electric currents JsðrÞ and its divergence ∇U JsðrÞ, i.e. the equivalent
electric charges, contribute to the scattered electric fields. To cor-
rectly model JsðrÞ, the basis functions used to expand JsðrÞ should
make ∇U JsðrÞ be an integrable function everywhere on the surface
in analysis. When the surface of a PEC object is discretized with
triangular elements, any polynomial functions defined on ele-
ments will make JsðrÞ be a finite and continuous function in the
corresponding domain. Besides, they usually make ∇U JsðrÞ be a
finite value in the inner part of a single element. However, on the
three edges of a triangular element, arbitrarily selected polynomial
functions could not guarantee the continuity of the normal com-
ponent of JsðrÞ. The discontinuity of JsðrÞ on the boundaries of an
element will make ∇UJsðrÞ be a singular function on these
boundaries. Because the equivalent surface currents are associated
with the equivalent surface charges through the continuous
equation, it can also be explained as the radiation of line charges
on boundaries of elements. Therefore, to calculate the scattered
electric fields correctly, both the contribution of the electric cur-
rents JsðrÞ and its divergence ∇U JsðrÞ should be modeled correctly.
The normal continuity condition of the JsðrÞ makes the choice of
the basis function limited in a divergence-conforming function
space. If other basis functions which can not guarantee the normal
continuity condition are used to expand the electric currents in the
EFIE, the contribution of the accumulated electric charges to the
scattered electric fields will results in error RCS values. This has
been observed in [12], but no any further explanation was given in
that paper. In [10,11], special techniques have been developed to
deal with the contribution of the accumulation of the electric
charges on the boundaries of elements.

Different from the case of the EFIE, for the MFIE in (4), it can be
seen clearly that only the surface currents JsðrÞ contribute to the
calculation of the scattered magnetic fields. There is no contribu-
tion from ∇U JsðrÞ, i.e., the equivalent charges. Therefore, even the
normal component of JsðrÞ is not continuous across element
boundaries, the accumulated line charges on the boundaries of an
element will not contribute to the scattered magnetic fields. If the
curl-conforming basis functions are used to expand the surface
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