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a b s t r a c t

In this paper, we proposed the complex variable moving Kriging interpolation (CVMKI) to approximate
functions on two-dimensional (2D) boundaries. The CVMKI is based on complex variable theory and the
moving Kriging interpolation (MKI). It requires no curvilinear coordinate, and can construct shape
functions possessing Kronecker delta function property and partition of unity property. Further, the
complex variable boundary node method (CVBNM) is proposed for potential problems based on CVMKI
and boundary integration equation (BIE). CVBNM is an efficient and accurate method that can directly
impose the boundary conditions. Three 2D example problems are presented to verify the accuracy and
efficiency of CVBNM.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The meshfree methods have attracted growing attention in
numerical simulations because of its greater flexibility and higher
precision than the conventional methods such as finite element
method (FEM) and boundary element method (BEM). A meshfree
method requires no cell for interpolation, and constructs the shape
function entirely based on scattered nodes. ‘Domain’ type mesh-
free methods such as smooth particle hydrodynamics (SPH) [1]
method, reproducing kernel particle method (RKPM) [2], the ele-
ment free Galerkin (EFG) method [3], the point interpolation
method (PIM) [4,5], the meshless local Petrov–Galerkin (MLPG)
[6–10] method, the complex variable element free Galerkin
(CVEFG) [11–15] method, the improved complex variable element-
free Galerkin (ICVEFG) method [16], the complex variable mesh-
less local Petrov-Galerkin (CVMLPG) method [17–19], the complex
variable reproducing kernel particle method (CVRKPM) [20–23],
the complex variable meshless manifold method (CVMMM) [24],
have been proposed and applied in many engineering problems.

The idea of meshfree has also been introduced in ‘boundary’
type method. Mukherjee et al. [25–27] have proposed the
boundary node method (BNM) based on the moving least square
(MLS) method [28] and the boundary integral equation (BIE).
Atluri et al. [29,30] have developed an important meshfree
method, called the local boundary integral equation (LBIE) method
for nonlinear problems and non-homogeneous domains. Zhang

et al. [31–33] have proposed the hybrid boundary node method
(HdBNM) that only requires nodes distributed on the boundary
without considering any cell for interpolation or for integration.
Based on different approximation methods and BIE, Cheng et al.
have proposed the boundary element-free method (BEFM) [34–
38], the improved boundary element-free method [39,40], the
complex variable boundary element-free method [41] and the
reproducing kernel particle boundary element-free method
(RPKBNM) [42]. Dai et al. [43] have proposed the moving Kriging
interpolation-based boundary node method (MKIBNM) by comb-
ing moving Kriging interpolation (MKI) with BIE for potential
problems. Zhang et al. [44–46] have proposed the boundary face
method (BFM) for many engineering problems.

Approximation methods such as SPH, MLS, CVMLS and MKI
play an important role in constructing the shape function in
meshless methods. MLS is one of the most widely used approx-
imation methods, because it can form the approximation function
with high precision. Based on MLS and complex variable theory,
Cheng et al. [11,13,14,47] have proposed the complex variable
moving least squares (CVMLS) approximation. With the applica-
tion of the complex variable theory, the trial function of a 2D
domain problem can be formed with a one-dimensional (1D) basis
function. Therefore, the unknown coefficients in the trial function
of the CVMLS approximation are less than that of the MLS
approximation. Thus, the computational efficiency and stability
increases. Besides, the complex variable theory can also be applied
in boundary type meshless method.

The 2D boundary problems are essentially 1D problems. In the
boundary type meshless methods, if we try to construct shape
functions directly using Cartesian coordinates, the coefficient
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matrix will be singular or ill-conditioned. Thus, the curvilinear
coordinates [25,48,49] are introduced to construct shape func-
tions. However, it is burdensome and time-consuming to obtain
the curvilinear coordinates for some problems, such as compli-
cated boundary problems and moving boundary problems. The
complex variables can be used to construct shape functions for
boundary problems instead of the curvilinear coordinates, because
it enables the trial function of a 2D problem to be formed with 1D
basis functions and avoids the singular or ill-conditioned coeffi-
cient matrix. Besides, the complex variable can be obtained
directly and easily from the Cartesian coordinates. Based on the
CVMLS approximation, Cheng et al. [41] have proposed the com-
plex variable boundary element-free method (CVBEFM) for 2D
elastodynamic problems.

According to the above methods, CVMLS brings efficiency and
stability to domain type meshless methods and convenience to
boundary type meshless methods. However, CVMLS inherits the
drawback of MLS that the shape functions do not satisfy the Kro-
necker delta property. Thus, the essential boundary conditions
need to be imposed by techniques such as Lagrange multipliers
method [3], direct collocation methods [50], penalty methods [51]
and modified variation principles [50,52].

In some meshless methods, the moving Kriging interpolation
(MKI) has been used to construct shape functions. The approx-
imation precision of MKI is higher than that of MLS. Besides, the
shape functions constructed by MKI possess Kronecker delta
property. Then, the essential boundary condition can be imposed
directly and easily. Gu [53] has firstly introduced MKI and has
successfully demonstrated the effectiveness of MKI in solving 2D
steady-state heat conduction problems. Based on MKI, Dai et al.
have proposed the moving Kriging interpolation-based boundary
node method (MKIBNM) [43] and the improved meshless local
Petrov–Galerkin (MLPG) [7–9] method, and Yimnak et al. [54] have
developed the local integral equation formulation for solving
coupled nonlinear reaction-diffusion equations.

In this paper, we proposed the complex variable moving Kri-
ging interpolation (CVMKI) based on the complex variable theory
and MKI. CVMKI only requires Cartesian coordinates of the
boundary nodes to construct shape functions possessing Kro-
necker delta property. Further, based on CVMKI and BIE, we pro-
posed the complex variable boundary node method (CVBNM),
which requires no curvilinear coordinate, can directly impose the
boundary conditions and has high efficiency.

2. Complex variable moving Kriging interpolation (CVMKI) on
2D boundary

In CVMKI, the complex variable z¼ xþ iy is used instead of the
curvilinear coordinate s to represent the position of points and
approximate boundary variables (Fig. 1).

Similar to the MKI approximation [7,53,55], the local approx-
imation of the function uðzÞ on the boundary can be defined by

uhðzÞ ¼
Xm
j ¼ 1

pjðzÞajþγðzÞ ¼ pðzÞaþγðzÞ ð1Þ

where pðzÞ ¼ ½p1ðzÞ; p2ðzÞ;⋯; pmðzÞ�, pjðzÞ ¼ zj�1 ðj¼ 1;2;⋯;mÞ are
monomial basis functions, m is the number of terms in basis.
aT ¼ ½a1; a2;⋯; am�, aj ðj¼ 1;2;⋯;mÞ are the coefficients of mono-
mial basis functions, and the random process γðzÞ is assumed to
have the following properties.

E½γðzÞ� ¼ 0
D½γðzÞ� ¼ σ2

CovfγðziÞ; γðzjÞg ¼ σ2Rðzi; zjÞ

8><
>: ð2Þ

where, σ2 is the variance, Rðzi; zjÞ is the correlation function
between node zi and node zj, and Gaussian function is chosen as
the correlation function in this work.

Rðzi; zjÞ ¼ exp �
ωr2ij
d2m

 !
ð3Þ

where rij ¼ zi�zj
�� �� is the norm of zi�zj and also the distance

between zi and zj, dm is the minimum distance between any two
nodes on the sub-boundary, ω40 is a correlation parameter and
ω¼ 0:03�0:2 is recommended [7].

Substituting the given set of boundary nodes z1; z2;⋯; znf g and
the corresponding function values U ¼ u1;u2;⋯;un½ �T into Eq. (1)
yields.

U ¼ Paþϒ ð4Þ
where, P is the n�m matrix that has basis function values at the
given set of nodes.

P ¼

p1ðz1Þ p2ðz1Þ ⋯ pmðz1Þ
p1ðz2Þ p2ðz2Þ ⋯ pmðz2Þ

⋮ ⋮ ⋱ ⋮
p1ðznÞ p2ðznÞ ⋯ pmðznÞ

2
66664

3
77775 ð5Þ

ϒ is the n� 1 vector of the error between regression model and
real process.

ϒΤ ¼ ½γ1; γ2;⋯; γn� ð6Þ
At any zAΓs, uðzÞ can also be estimated by the linear predictor.

ûðzÞ ¼ ΦðzÞU ¼ ½ϕ1;ϕ2;⋯;ϕn�

u1

u2

⋮
un

2
6664

3
7775 ð7Þ

The error between ûðzÞ and uhðzÞ is
ûðzÞ�uhðzÞ ¼ΦðzÞU�uhðzÞ

¼ΦðzÞðPaþϒ Þ�ðpðzÞaþγðzÞÞ
¼ΦðzÞϒ�γðzÞþðΦðzÞP � pðzÞÞa ð8Þ
To ensure the unbiased predictor, Eq. (9) has to be satisfied.

ΦðzÞP�pðzÞ ¼ 0 ð9Þ
Substituting Eq. (9) into Eq. (8), we can obtain

ûðzÞ�uhðzÞ ¼ΦðzÞϒ�γðzÞ ð10Þ
Assuming ûðzÞ as random, we can compute the mean squared

error (MSE) of ûðzÞ. Thus, the best linear unbiased predictor (BLUP)

Fig. 1. Complex variable on the boundary.
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