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a b s t r a c t

The motion of a pair of spherical particles suspended in a viscous fluid is considered under conditions of
Stokes flow. The particle surfaces allow the fluid to slip according to the Navier–Maxwell–Basset law.
Batchelor and Green's mobility functions determining the relative particle motion during interception
are computed with high accuracy using a boundary-integral method, and their dependence on the slip
coefficient is discussed. The numerical results confirm that particle collision in the presence of surface
slip occurs with a finite impact velocity. As the slip coefficient decreases, and thereby the particle sur-
faces become increasingly slippery, the collision efficiency in uniaxial elongational and simple shear flow
increases monotonically from zero for no-slip surfaces to a finite limit for perfectly slippery surfaces.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Luo and Pozrikidis [1] developed a boundary-integral method
for computing the interception of two spherical particles in linear
Stokes flow, where the fluid is allowed to slip over the particle
surfaces according to the Navier–Maxwell–Basset law [2]. The
physical objective was to provide insight into the hydrodynamics
of suspensions at small scales where the no-slip (stick) boundary
condition fails and the fluid appears to slip with a velocity that is
proportional to the local shearing component of the traction. If the
ambient fluid is a rarefied gas, the slip coefficient can be related
rigorously to the mean free path by the Maxwell relation in terms
of the Knudsen number and the tangential momentum accom-
modation coefficient (TMAC) (e.g., [3,4]). Macroscopic (apparent)
slip arises in the flow past nonidealized particles with irregular
surfaces due to natural boundary roughness. Flow over a hydro-
phobic surface appears to slip with a slip length on the order of
micrometers.

Luo and Pozrikidis [1] found that two particles intercepting in
simple shear flow collide when the initial lateral particle offset is
sufficiently small and the slip coefficient is sufficiently low. In the
absence of slip, the particles are not able to collide due to strong
lubrication forces developing between the particle surfaces in
close proximity. Instead, the particles roll over and bypass each
other, or else engage in a perpetual orbiting motion. In this paper,

the hydrodynamic interaction of two particles with slip surfaces is
further considered.

Following the landmark analysis of Batchelor and Green [5] for
spherical solid particles and liquid drops, we express the velocity
of one slippery spherical particle labeled A with radius a relative to
the velocity of a second slippery particle labeled B with radius δa
in an infinite linear flow as

VA�VB ¼ω1 � rþE1 � r� AðsÞ
r2

r � rþBðsÞ
r2

ðr2I�r � rÞ
� �

� E1 � r;

ð1:1Þ
where r is the relative position of the particle centers, s¼ j rj=am is
a scaled dimensionless distance, am ¼ 1

2ð1þδÞ a is the mean parti-
cle radius, ω1 is half the vorticity vector of the unperturbed linear
flow, and E1 is the rate-of-deformation tensor of the unperturbed
linear flow. The dimensionless functions AðsÞ and BðsÞ are the axial
and transverse relative mobility coefficients.

Our first objective in this paper is to present accurate data on
these functions over a broad range of particle separations, well into
the regime of small gaps, and to discuss their dependence on the slip
coefficient. The results will confirm that surface slip allows the par-
ticles to collide at a finite time with a nonzero impact velocity.

When a particle suspension is stirred, particles intercept one
another and agglomerate permanently or temporarily during colli-
sion. Flow-induced agglomeration renders the suspended phase
hydrodynamically unstable. The collision efficiency is the ratio of the
rate of particle collision to that occurring when the particles follow
the streamlines of the unperturbed flow (e.g., [6]). Because particles
with no-slip surfaces are unable to collide at a finite time due to
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strong lubrication forces developing at small separations, the colli-
sion efficiency is zero. In contrast, perfectly spherical bubbles and
drops can touch at a finite time, yielding a nonzero collision effi-
ciency (e.g., [7]). Interfacial deformation at small separations pre-
vents the interfaces from touching. However, if the thickness of the
film separating the interfaces of two drops or bubbles is sufficiently
small, attractive intermolecular forces cause adhesion or film rupture
and allow for coalescence below a certain threshold.

Our second objective in this paper is to investigate the effect of
the particle surface slip of the collision efficiency of a mono-
disperse suspension. The results will show that, as the slip coef-
ficient decreases and thereby the surfaces become increasingly
slippery, the collision efficiency increases for both extensional and
simple shear flow.

2. Interception of two spherical particles

We consider viscous flow past two suspended spherical parti-
cles in an effectively infinite fluid. Far from the particles, the
velocity field takes the linear form

U1ðXÞ ¼ LT � X; ð2:1Þ
where L is the velocity gradient tensor with components
Lij ¼ ∂Uj=∂Xi, the superscript T denotes the matrix transpose, and
X¼ ðX;Y ; ZÞ is the position in laboratory-fixed coordinates, as
shown in Fig. 1. The presence or motion of the particles generates
a disturbance flow, denoted by the superscript D, that may be
added to the incident linear flow to yield the total physical flow
with velocity U¼U1þUD.

The no-penetration and slip boundary conditions are assumed
over the particle surfaces, requiring that the surface velocity is
given by

U¼ VðiÞ þΩðiÞ � ðX�XðiÞ
c ÞþUS; ð2:2Þ

where VðiÞ is the velocity of translation of the ith particle center XðiÞ
c

for i¼1, 2, andΩðiÞ is the angular velocity of rotation about XðiÞ
c . The

slip velocity is given by the Navier–Maxwell–Basset relation

US ¼ L
μβ

N� F�N¼ λ
μ
N� F� N; ð2:3Þ

where μ is the fluid viscosity, F�Σ � N is the surface traction, Σ is
the stress tensor, N is the unit normal vector pointing into the
fluid, L is a chosen characteristic length scale, β is the dimen-
sionless Basset slip coefficient ranging from zero in the case of
vanishing shear stress and perfect slip to infinity in the case of no
slip, and λ¼ L=β is the particle surface slip length. As β tends to
zero, the shear stress vanishes to allow for a finite slip velocity.
Thus, particles with perfectly slippery surfaces can be regarded as
gas bubbles enclosed by free surfaces where the zero-shear-stress
condition applies.

To recast the problem into a canonical flow, we introduce a new
coordinate system, ðx; y; zÞ, with origin at the center of the first
sphere, Xð1Þ

c . The x-axis passes through the centers of the two
particles, while the y and z axes point into two orthogonal but
otherwise unspecified directions. Thus, the definition of the par-
ticle coordinate system affords one inconsequential degree of
freedom. The position vector and the velocity transform according
to the equations

X¼Xð1Þ
c þA � x; u¼AT � U; ð2:4Þ

where A is an orthogonal transformation matrix hosting in its
columns the direction cosines of the unit vectors along the x; y,
and z axes,

A¼
ðexÞX ðeyÞX ðezÞX
ðexÞY ðeyÞY ðezÞY
ðexÞZ ðeyÞZ ðezÞZ

2
64

3
75�

AXx AXy AXz

AYx AYy AYz

AZx AZy AZz

2
64

3
75 ð2:5Þ

with

ex ¼ Xð2Þ
c �Xð1Þ

c

Xð2Þ
c �Xð1Þ

c

��� ���; ð2:6Þ

ei � ej ¼ δij, where δij is Kronecker's delta. Applying the velocity
transformation rules for the incident linear flow, we find that

u1ðxÞ ¼ AT � LT � X¼ AT � LT � ðXð1Þ
c þA � xÞ; ð2:7Þ

which can be rewritten as

u1ðxÞ ¼ v1þMT � x; ð2:8Þ
where v1 ¼ AT � LT � Xð1Þ

c and M¼ AT � L � A. The orthogonality of
the matrix A ensures that the trace of the velocity gradient tensor
in the particle frame, M, is zero.

Luo and Pozrikidis [1] developed a boundary-integral method
for solving the governing equations in the particle-doublet frame
and simultaneously computing the particle translational and
angular velocities. At any instant, the flow is computed in a frame
of reference with origin at the center of one particle using a
cylindrical polar coordinate system whose axis of revolution pas-
ses through the center of the second particle. Taking advantage of
the axial symmetry of the boundaries of the flow in the particle
coordinates, the problem is formulated as a system of integral
equations for the zeroth, first, and second Fourier coefficients of
the boundary traction with respect to the azimuthal angle, φ,
measured around the axis connecting the particle centers, as
shown in Fig. 1. The force and the torque exerted on each particle
are determined by the zeroth and first Fourier coefficients, while
the stresslet is determined by the zeroth, first, and second Fourier
coefficients.

The integral equations were solved with high accuracy using a
boundary-element method featuring adaptive element distribu-
tion and automatic time-step adjustment according to the inter-
particle gap. The semicircular particle contours in the φ¼ 0 azi-
muthal plane were divided into circular elements and the Fourier
coefficients were approximated with constant functions over each
element. For best accuracy, the elements were concentrated near
the axis of symmetry so that their size increases geometrically

Fig. 1. Two spherical particles with arbitrary radii intercept in a linear flow; ðX; Y ; ZÞ
are the global coordinates fixed at the laboratory frame, ðx; y; zÞ are particle doublet
coordinates, ðr; θ;φÞ are corresponding spherical polar coordinates, and ðx; σ;φÞ are
cylindrical polar coordinates attached to one particle.
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