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a b s t r a c t

Motivated by the Trefftz method, a numerical algorithm is proposed based on the least-squares tech-
nique for a scattering problem in near field optics. Fundamental solutions and plane wave functions are
used to approximate the scattering field toward infinity and the local properties, respectively. Whilst
evanescent wave functions are introduced to enrich the plane wave functions to capture the sub-
wavelength feature of the field. The continuity across the element boundaries is enforced by minimizing
a simple quadratic functional. The method needs not truncate the domain and could obtain high accuracy
with even coarse mesh by increasing the number of basis functions. Numerical experiments are also
presented to show the effectiveness of the approach.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As our recognition expanded into the nano-world, near field
optics has developed dramatically and been applied in diverse
aspects, including nano-technology, optics microscopy, non-
destructive imaging in biology [1]. Since near field optics can
provide an effective approach to improve the resolution [2,3], it is
desirable to solve the underlying scattering problem in order to
understand the physical mechanism. As marked in [11]: three
important modalities that fall in the scenario of near-field optics
are near-field scanning optical microscopy (NSOM) [5], total
internal reflection microscopy (TIRM) [6,7], and photon scanning
tunneling microscopy (PSTM) [11,8,9]. In NSOM, the light source is
transmitted through both the fiber and the small aperture at the
tip of a probe. The probe is scanned over the sample in the near-
field zone. The field scattered by the sample is then collected and
measured in the far-field zone as a function of the probe position.
In TIRM, the sample is illuminated by high spatial frequency eva-
nescent plane waves, which may be generated by total internal
reflection from a prism [10]. The scattered field is measured in the
far zone of the sample as the direction of the incident wave is
varied. In PSTM, the sample is illuminated by an evanescent field
generated at the face of a prism (similar to TIRM), but the scattered
field is detected via a tapered fiber probe in the near zone of the
sample (as in NSOM). See [4] for an account of other modalities as

basic experiments of near-field optics and associated scattering
theories.

In this work, we study an experimental mode in near field
optics that models the TIRM. It is an important optical microscopy
and is of great advantages such as high sinal to noise ratio, high
resolution and less damage to the specimen. According to the
imaging system, TIRM is classified into prism type and objective
type. Here, we focus on the latter one, whose objective is used as
an optical element to generate total internal reflection as well as a
receiver to collect the signals of specimen. Specifically, a sample is
deposited on a homogeneous substrate and illustrated below
(transmission geometry) by time harmonic waves with incident
angle greater than the critical value. Then the evanescent waves
appearing at the other side of the interface are used as illumina-
tion to encode the sub-wavelength structure of the scattering
object. This phenomenon is mathematically described by a time-
harmonic wave equation, whose solution is oscillatory with the
wave length. As a consequence, the problem becomes more diffi-
cult computationally as frequency of waves or computational
domain grows [12], and prevents the traditional discretization
methods from effective use, such as finite element and finite dif-
ference methods [13]. On the one hand, the domain must be
truncated first. And it is essential to use an absorbing boundary
condition to restrict spurious numerical reflections from the arti-
ficial exterior boundary. But, exact absorbing boundary conditions
are usually non-local and thus involve large computational efforts.
And the approximate absorbing conditions either do not necessary
give an acceptable accuracy or have limitations to certain bound-
ary geometries and incident directions. On the other hand, there
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must be sufficient number of discretization points to resolve the
solution by these methods. A standard rule of thumb is to use at
least ten grid points per wavelength. This dramatically increases
the number of unknowns and entails an excessive computational
efforts, eventually makes intractable using classical numerical
methods. Furthermore, since the evanescent waves exponentially
decay with distance from the interface, numerically capturing
their information, which contains much more sub-scale features of
the specimen, becomes a challenging task. When there is no
sample, the problem is studied in [14–17].

In [18], the authors investigate the use of ultra weak variational
formulation to solve such problem. In order to capture the sub-
scale features of waves, we utilize evanescent wave functions
together with plane wave functions to approximate the local
properties of the field. Then analyze the global convergence and
give an error estimation of the method. Motivated by the Trefftz
method, in this paper we propose a least-squares method for this
problem. The idea of the Trefftz method is to use the basis func-
tions which are the solutions locally of the underlying partial
differential equation (PDE) in each element. The main examples
are the ultra weak variational formulation (UWVF) [19,20], the
discontinuous enrichment method (DEM) [21], the discontinuous
Galerkin method (DG) [22,23], the partition of unity method
(PUM) [24,25], variational theory of complex rays (VTCR) [26],
wave based method (WBM) [27] and many least-squares methods
[28,29]. We also should note that the method of fundamental
solutions is a Trefftz-like method, and the method of fundamental
solutions for scattering and radiation problems are also investi-
gated by Fairweather et al. [30] or Karageorghis and Lesnic [31,32].

In this paper, we attempt to solve a scattering problem in near
field optics combining the fundamental solutions, plane wave
functions, and the evanescent wave functions firstly. There are two
main strategies in our scheme. One is to approximate the scat-
tering field toward infinity by fundamental solutions instead of
truncating the whole space. The other is to use plane wave func-
tions combining evanescent wave functions for approximating the
scattering field in near field. Since the information about the fre-
quency is directly incorporated in the discrete space, only a small
number of elements are needed and the size of the element even
does not depend on the wavenumber. Whilst the information of
the scattering filed in near field can be captured numerically. The
proposed method can be implemented with less complexity, and
various integrals can be evaluated in a closed form. When the
wavenumber grows, it still can effectively resolve the problem
with much fewer calculations.

The remainder of this paper is organized as follows. In Section
2, the model problem to be studied is formulated. In Section 3, we
present our numerical method in detail. In Section 4, numerical
experiments are performed to show the effectiveness of the
approach. In Section 5, the concluding remarks are given for the
proposed method.

2. Model problem

Throughout this paper, we assume nonmagnetic materials and
transverse magnetic polarization, i.e., TM polarization. Meanwhile,
the model Maxwell equations reduce to the two-dimensional
Helmholtz equation. Thus in this paper, we mainly consider a
near field scattering problem in R2 which models the total internal
reflection microscopy (TIRM). The point in the plane is denoted by
x¼ ðx; yÞAR2. Γ ¼ fxjy¼ 0g denotes the substrate interface and
divides the whole space R2 into two parts R2

þ ¼ fxjy40g and
R2

� ¼ fxjyo0g, i.e., R2 ¼R2
þ [ R2

� [ Γ. The corresponding
refractive indexes are constants nþ and n� , respectively, with
nþ on� . A sample S with refractive ns is deposited on the

substrate Γ and illustrated below by time harmonic plane wave
ui ¼ expðiαxþ iηyÞ, where α¼ k0n� sin θ, η¼ k0n� cosθ with k0
and θ denoting the free-space wavenumber and incident angle,
respectively. We refer to Fig. 1 for the geometry illustration. Once θ
becomes larger than the critical value θcr, the total inner reflection
happens. Then the evanescent wave appears in R2

þ , which expo-
nentially decay with the distance from the substrate and oscillate
with a wavelength in the directions along the interface. We try to
compute the scattering field us caused by the sample.

When there is no sample, we denote the field by uref called the
reference field. From [33], we know that uref has the following
form:

uref ¼
ut ; xAR2

þ ;

uiþur ; xAR2
� ;

(
ð1Þ

where ut and ur are the transmitted wave and reflected wave,
respectively. More precisely, we have

ut ¼ 2η
ηþγðαÞexpðiαxþ iγðαÞyÞ; ur ¼ η�γðαÞ

ηþγðαÞexpðiαx� iηyÞ; ð2Þ

where

γðαÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20n

2þ �α2
q

; for k0nþ 4 jαj ;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2�k20n

2þ

q
; for k0nþ o jαj :

8><
>: ð3Þ

From (2) and (3), it is easy to see that when the incident angle is
larger than the critical value, i.e., k0nþ o jαj , γðαÞ is purely ima-
ginary. Whilst the transmitted wave becomes evanescent wave,
which propagates in the directions along the substrate surface and
exponentially decays in the y direction.

When the sample is deposited, the reference field uref is dis-
turbed. Thus scattering field us emerges. Whilst the total field u is
given by

u¼ uref þus: ð4Þ
Then from the electromagnetic theory of Maxwell, u satisfies the
following equation:

Δuþk20n
2ðxÞu¼ 0; xAR2; ð5Þ

with the wavenumber κ ¼ k0nðxÞ and the refractive

nðxÞ ¼
nþ ; xA R2

þ⧹S;
ns; xAS;

n� ; xAR2
� :

8><
>:

Fig. 1. A schematic of the problem geometry: the location of the sample S, the
incident wave ui, the scattering filed us, the refractive indexes nþ and n� , the
substrate interface Γ.

T. Luan, Y. Sun / Engineering Analysis with Boundary Elements 65 (2016) 101–111102



Download English Version:

https://daneshyari.com/en/article/512165

Download Persian Version:

https://daneshyari.com/article/512165

Daneshyari.com

https://daneshyari.com/en/article/512165
https://daneshyari.com/article/512165
https://daneshyari.com

