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a b s t r a c t

This study proposes a computationally efficient algorithm for determining which pairs of points among many
predetermined pairs in three dimensions will maintain straight line visibility between one another in the
presence of an arbitrary surface mesh of triangles. This is carried out in the context of meshless numerical
methods with the goal of implementing near-real-time discontinuity propagation simulation. A brief overview
is given of existing discontinuity modelling techniques for meshless methods. Such techniques necessitate
determination of which key pairs of points (nodes and quadrature points) lack straight line visibility due to the
discontinuity, which is proposed to be modelled with a surface mesh of triangles. The efficiency of this
algorithm is achieved by allocating all quadrature points and surface mesh triangles to the cells of an overlayed
three-dimensional grid in order to rapidly identify for each triangle an approximately minimal set of
quadrature points whose nodal connectivities may be interrupted due to the presence of the triangle, hence
eliminating most redundant visibility checking computations. Triangles are automatically split such that any
size of overlayed cubic grid cells can be employed, and the parameters governing triangle splitting and binning
have been examined experimentally in order to optimise the visibility algorithm.
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1. Introduction

This work seeks to make an addition to meshless numerical
methods as applied to emerging fields such as computational biome-
chanics, in which one of the present challenges is near-real-time
simulation of soft tissue cutting. In applications of biomechanical
simulation, meshless methods have many practical advantages over
FEM. Presently, the most important is that accurate model generation
of patient-specific organ geometry from pre-operational images can
be automated, while FEM models comprised of workable elements
require days of adjustment by an analyst [1,2]. Removal of this
workflow bottleneck makes meshless methods an ideal candidate
for implementation in near-real-time intra-operational surgical simu-
lations of tissue deformation, which for many procedures demands
simulation of cutting.

Attempts to model discontinuities within meshless simulations
have mostly been focused on cracks and their propagation. Rabczuk
et al. [3,4] use nodes in the crack path to superimpose a discontin-
uous enrichment function to the nearby displacement field. Use of
these so-called “cracked particles” applies only to finely cracking
solids and not to deforming soft bodies with arbitrary discontinuities,
and the existence of discontinuities only at particular particles limits

the accuracy with which they can be modelled. Level-set functions
proposed by Osher and Sethian [5] and applied to FEM crack growth
modelling by Stolarska et al. [6], have also been applied to the
problem of using meshless methods to model surgical cutting of brain
tissue in two and three dimensions by Jin et al. [7]. In two dimensions,
discontinuities are represented by a series of straight line segments,
each of which uses the vector between the segment's beginning and
end to define a level-set function with values of opposing signs on
opposing sides of the segment, and another such vector and level-set
function perpendicular to the end of the segment. This allows a natural
division of the space into four subdomains. By calculating the two
function values for each of any two points in space, it can be
immediately determined whether the line segment under considera-
tion will block straight line visibility between the points, allowing
appropriate adjustment of support domains. This idea can be extended
to three dimensions [8], and can also make use of level-set functions
whose zeroes are not straight line segments or planes, allowing more
complex discontinuities without additional segments, provided that an
appropriate closed-form level-set function can be found. A potential
drawback to this method is that it requires intricate piecewise function
definitions to define jagged or curved shapes, which may entail speed
and accuracy reductions. It is also difficult to update the level-sets for
intersecting discontinuities or sharp changes in the direction of the cut.

Krysl and Belytschko [3,9] have previously proposed and
implemented meshes of triangular elements for modelling of
arbitrary crack growth in conjunction with the visibility criterion.
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At a time step in which crack growth occurs, only the new portion
of the discontinuity needs to be considered to alter the necessary
support domains. For each new triangle in the propagating crack,
its bounding box, inflated by the simulation's largest support size,
is used as a maximum region in which shape functions could
possibly need to be altered due to that discrete portion of the
discontinuity. When a set of new triangles is added to extend the
crack, for each quadrature point enclosed within the union of all
the maximum regions, the rays between it and each associated
node are checked for intersection with the new triangles. If the ray
intersects the triangle, the “visibility criterion” between the two
points of interest fails, and the node is removed from the
quadrature point's list of neighbours which influence the local
shape functions.

An efficient algorithm for finding which quadrature points are
contained within a given maximum region is not proposed in their
paper. For a particular crack growth time step there may be many such
regions requiring identification of contained quadrature points, and it
may be too slow to retrieve the appropriate points from lists of global
quadrature point coordinates to permit real-time growth simulation.
In furthering the strategy put forward by their paper, it is worth noting
that it is not necessary to check all the quadrature points found in the
union of the maximum regions against every contained triangle, but
rather just the ones inside each individual inflated bounding box
against its associated triangle. Additionally, an inflated bounding box
will always include unnecessary quadrature points near the corners,
which can be mostly eliminated by instead using an appropriately
inflated bounding sphere.

In many applications, surface meshes of triangles may be the
most desirable method for representing either static or propagating
discontinuities. An analyst may easily manually place the vertices of a
set of triangles interconnected such that they closely replicate a real
discontinuity. Accurate automation of surface mesh creation from an
existing three dimensional image featuring a clear discontinuity is
also a simple task compared to that of automatically meshing a
volume. For propagating discontinuities, addition of triangles to the
outer edges of the surface is a natural operation which does not
require adjustment to the existing discontinuity.

In Sections 2 and 3, this paper outlines an algorithm for efficiently
conducting the visibility checks required to model meshless methods
discontinuities with a surface mesh of triangles. Section 4 presents
experimental findings pertaining to execution times which justify its

use in near-real-time applications such as surgical simulation, even
for meshes composed of very many triangles.

2. Algorithm overview

Quadrature points which are more distant than the simula-
tion's largest nodal support size from all points on a triangular
discontinuity portion cannot have visibility blocked from the
nodes that influence their local shape functions, and so they do
not need to have their neighbouring nodes checked for straight
line visibility. By cycling through every triangle comprising the
surface mesh, and identifying as small as possible a set of
quadrature points which contains all of those sufficiently nearby
to warrant nodal visibility checks, the number of visibility criterion
checks required to appropriately adjust the nodal support domains
due to the discontinuity will be minimised.

As a simple and computationally efficient way of enclosing all
of the quadrature points within the maximum support size
distance from all points of a triangle, bounding spheres are
proposed for each triangle. The surface of each sphere is such that
all points are at least the maximum support size away from all
points on the triangle which it surrounds. It is not viable to find
which of the simulation quadrature points lie within the sphere by
checking all of their Euclidian distances from its centre. Rather,
inspiration is drawn from the field of computational contact
mechanics, in which the “bucket search” algorithm (proposed by
Benson and Hallquist [10]) is commonly used to efficiently detect
the occurrence of contact between two disjoint bodies in a
simulation. The adaptation of this algorithm as applied to the
present problem begins with superposition of a three-dimensional
grid of cubic cells over the physical coordinates. Each surface mesh
triangle and each quadrature point is allocated (or “binned”) into a
unique cell, with triangles being split until they each fit into a
unique cell within certain overhang tolerances. With each triangle
approximately confined to a single cubic cell, the bounding sphere
can be approximated by a “sphere of cubes” consisting of a set of
grid cells, centred upon the cell containing the triangle. This
scenario is demonstrated in Fig. 1.

The set of cells required to fully include a bounding sphere of a
particular radius given a particular cell length can be precom-
puted, such that all the quadrature points already allocated to that

Fig. 1. A sphere of cubes viewed along the cell grid x-axis – with visible overestimations, the sphere of cubes includes the entire idealised bounding sphere of the triangle of
concern, which in turn includes all quadrature points whose nodes may fail the visibility criterion due to the triangle. The idealised sphere is inflated slightly to allow for the
0.45 cell length maximum possible overhang of the triangle vertices into cells adjacent to the triangle's allocation cell.
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