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a b s t r a c t

In this paper, the element free Galerkin method (EFG) is proposed for topology optimization of cracked
structures using the bi-directional evolutionary structural optimization method (BESO). The mathema-
tical formulation of the topology optimization is developed considering the nodal strain energy as the
design variable and the minimization of compliance as the objective function. The element free Galerkin
method is enriched by the crack-tip enrichment functions to increase the approximation accuracy near
the crack-tip. The Lagrange multiplier method is employed to enforce the essential boundary conditions.
Several numerical examples are presented to show the effectiveness of the proposed method. Many
issues related to topology optimization of cracked structures such as the effects of crack size and location
on the optimal topology are addressed in the examples. The common numerical instabilities do not exist
in the results.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The structural optimization techniques have made remarkable
progress in recent years. The objective of the structural optimization
is to minimize the structural weight while maintaining the overall
stiffness and satisfying the design constraints in a specific design
domain [1]. The optimization methods can be employed in order to
optimize the structural size, shape and topology. In size and shape
optimization, only the cross-sectional properties and the design
domain boundaries are optimized respectively, while the topology
optimization in addition to variation of the design domain bound-
aries specifies number, size and location of cavities in continuum
structures. The topology optimization remarkably optimizes the
structural performance and has great practical application in the
design of structures such as bridges and buildings. Several topology
optimization methods have been proposed in the past decades to
meet the structural requirements. The homogenization method and
its variant, the variable density approach are one of the most popular
approaches in the field of structural topology optimization [2]. The
variable density approach has attracted many researchers due to its
clear concept and simplicity implementation. Other topology optimi-
zation approaches have also been constructed and developed. The
level set method was created to change the structure outline for
finding an optimal shape design [3]. The evolutionary structural
optimization method (ESO) was proposed based on gradual elimi-
nation of inefficient materials [4]. In the ESO method, because the
inefficient materials are completely removed from the structure, there

is no information about the effects of these materials on the objective
function in the later stages of optimization. The bi-directional ESO
method (BESO) is a further development of the ESO method that is
developed based on the idea of adding the efficient materials to the
structure as well as removing the inefficient ones [5–7]. The BESO
method has many advantages over the ESO method in terms of
computational efficiency, robustness of the method and manufactur-
ability of the final topology [8]. The significance of the BESO method is
its simplicity and applicability for optimization of various types of
structures [9–12].

It should be noted that almost in all the previous research work
[1–12] the numerical method is the finite element method (FEM). The
FEM encounters some difficulties when dealing with problems invol-
ving large deformation, moving boundaries and crack propagation due
to the need for frequent remeshing. Especially, crack propagation is a
prime example in which the use of FEM requires a large number of
remeshings of the finite element model to represent arbitrary and
complex paths. To overcome these difficulties, a group of meshfree
methods such as smooth particle hydrodynamics (SPH), element free
Galerkin (EFG), reproducing kernel particle (RKPM) and meshless
local Petrov–Galerkin method have been found. Due to their meshfree
nature, these methods do not require maintaining the integrity and
desired shape of the elements. Therefore, the crack propagation can be
effectively simulated with meshless methods.

Especially, the element free Galerkin method is very versatile
for modeling of propagation of cracks, due to the absence of any
predefined element connectivity and no need to frequent remeshings.
The EFG utilizes moving least-squares interpolants which requires
only nodes, unencumbered by elements and elemental connectivity,
to construct the shape functions. It has been found that the EFG has a
good convergence rate and high order continuity of the field variables
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that generally exhibits good numerical stability and accuracy for
computational solid mechanics problems [13,15,16,29]. This method
has mainly been applied in the area of crack propagation, where
nodes were continuously moved or added to follow the crack tip
[14,25].

To date, a few researchers have employed meshless methods to
topology optimization of continuum structures. The ESO method
integrated with the meshless Galerkin method was applied to
carry out the topology optimization of continuum structures [16].
The meshless Galerkin method was combined with a meaningful
density approximant to create an efficient topology optimization
approach [17]. The variable density approach based on the RKPM
method was developed for topology optimization of geometrically
nonlinear structures [18]. The implicit topology description function
was integrated into the RKPM method to implement the topology
optimization of continua [19]. The structural shape and topology
optimization problem was solved by using the level set method
incorporated with the Galerkin global weak forms [20]. The EFG
method combined with the Pareto-optimality theory was applied to
carry out the topology optimization of continuum structure [21].
The BESO method based on the EFG method was developed for
topology optimization of continuum structures [22]. By far, we have
not found any publication that introduces meshfree methods into
the topology optimization to design the cracked structures.

In this paper, the element free Galerkin method (EFG) is proposed
to solve the topology optimization problem of cracked structures
using the bi-directional evolutionary structural optimization method
(BESO). The mathematical formulation of the topology optimiza-
tion is developed considering the nodal strain energy as the design
variable and the minimization of compliance as the objective
function. The EFG is enriched by the crack-tip enrichment functions
to increase the approximation accuracy near the crack-tip. Several 2D
examples that are widely used in topology optimization problems are
illustrated to show the effectiveness of the proposed method. The
examples show that the present method can effectively suppress the
common numerical instabilities such as checkerboard patterns. Many
issues related to topology optimization of cracked structures such as
the effects of crack size and location on the optimal topology are
addressed in the examples.

2. Review of the element free Galerkin method (EFG)

In this section a brief description of the EFG method is given,
full details can be found in References [13,23,26]. In the EFG
method, the approximation uhðxÞ for the displacement field uðxÞ
can be written as:

uiðxÞ ¼ uh
i ðxÞ ¼ aijðxÞpjðxÞ ð1Þ

where aij are unknown parameters. The parameters aij at any given
point x are determined by minimizing the least-squares functional:

JiðxÞ ¼
Xn
I ¼ 1

wðx�xIÞ½aijðxÞpjðxIÞ�uiI�2 ð2Þ

where wðx�xIÞ is the weight function associated with node xI , uI are
the nodal displacement parameters and n is the number of nodes
whose support includes point x. The minimization of JðxÞ in Eq. (2)
leads to linear relations between aij and uiI so that Eq. (1) can be
written in standard shape function as follows:

uh
i ðxÞ ¼

Xn
I ¼ 1

ΦIðxÞuiI ð3Þ

It should be noted that the shape functions derived from the
moving least-squares (MLS) approximation do not satisfy the

Kronecker delta condition (ΦIðxJÞaδIJ). Therefore, extra procedures
such as Lagrange multipliers are needed for the imposition of the
essential boundary conditions.

2.1. Discrete equations and Lagrange multipliers

Consider a two-dimensional problem on the domain Ω
bounded by Γ in elasticity mechanics. In this problem, u denotes
the displacement vector on Ω, b is the body force vector, u is the
prescribed displacement on boundary Γu and t is the prescribed
traction on boundary Γt . In the EFG, the final discrete equation
for this problem is [13]:

K K
GT 0
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¼
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q
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ð4Þ
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In the above equations, BI is the standard strain matrix for node
I, NK is the Lagrange interpolation matrix and D is the stress-strain
relationship matrix, respectively. The solution of Eq. (4) is the
vector u, which is a vector of nodal displacements. Subsequently,
the nodal strain energy, αSE , can be obtained using the strain-
displacement and constitutive equations:

αSE ¼ 1
2
σTε¼

Xn
I ¼ 1

1
2
uI

TBT
I DBIuI ð7Þ

2.2. Enriched EFG for modeling of crack

A crack is modeled in the EFG by defining a line segment internal
to the domain. The main idea to capture the crack is to enrich the test
and trial functions with additional unknowns so that the approxima-
tion is continuous in whole domain but discontinuous along the
crack. Therefore, the test and trail functions are written in terms of a
signed distance function f (see Fig. 1) [24-26]:

uhðxÞ ¼
X
IAS

ΦIðxÞuIþ
X
IASc

ΦIðxÞHðf IðxÞÞaIþ
X
IA Sf

ΦIðxÞ
X4
α ¼ 1

bαBα ðxÞK ð8Þ

where ΦI are the MLS shape function and H and Bα are enrich-
ment functions. The coefficient a and b are additional unknowns
introduced for the crack in the variational formulation. The
Heaviside function, H depends on the signed distance f IðxÞ and
is defined as:

Hðf IðxÞÞ ¼ 1if f IðxÞ40
Hðf IðxÞÞ ¼ �1if f IðxÞo0

(
ð9Þ

with

f IðxÞ ¼
sign½n:ðxI�xÞmin‖xI�x‖; for xIASc

n:ðxtip�xIÞ; for xIASf

(
ð10Þ

where n is the crack normal and xtip are the coordinates of the
crack tip. In the linear elastic fracture mechanics, B is chosen to be
continuous in the whole domain Sf , but discontinuous at the crack
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