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a b s t r a c t

This paper presents an application of the method of fundamental solutions (MFS) for the numerical
solution of 2D and 3D Signorini problems. In our application, by using a projection technique to tackle
the nonlinear Signorini boundary inequality conditions, the original Signorini problem is transformed
into a sequence of linear elliptic boundary value problems and then solved by the MFS. Convergence and
efficiency of the present MFS is proved theoretically and verified numerically.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Signorini problems come up in the modeling of many realistic
science and engineering applications such as the shallow dam
problem [1–4], the electropaint process [3–7], the unilateral contact
problem [8,9], the free boundary problem [10,11], and so on. Besides,
in the theory of variational inequalities [12,13], a broad class of
problems arising in industry, social, economics, finance, pure and
applied sciences give rise to Signorini problems. The numerical
solution of Signorini problems has been frequently dominated by
classical numerical methods such as the finite difference method and
the finite element method (FEM) [1,6,8]. These methods require
domain meshing which is often arduous, computationally expensive,
and fraught with pitfalls.

In Signorini problems, the boundary potential and its normal
derivative alternate on the Signorini boundary in conjunction with
certain nonlinear boundary inequality conditions. To obtain the
solution in the domain, we need first to determine the number
and position where the change from one type of boundary condition
to the other occurs. Therefore, the primary focus in solving Signorini
problems is on the Signorini boundary of the domain and thus, the
boundary element method (BEM) is particularly suitable for the
approximate solution of such problems. Some applications of the
BEM for Signorini problems can be found in Refs. [2,3,9,11,14–17].

The BEM reduces the computational dimensions of the original
problem by one and gives a simple discretization of infinite domain
problems [18], but it involves the generation of elements on the
boundary surface and the computation of some complex singular
integrals on boundary elements. In some cases, these processes can
also be very difficult and computationally expensive. To alleviate
the meshing-related issues, some boundary type meshless meth-
ods, such as the boundary node method (BNM) [19], the boundary
point interpolation method (BPIM) [20], the hybrid BNM [21–25],
the Galerkin BNM [26,27], the dual BNM [28,29] and the boundary
element-free method (BEFM) [30–32], have been developed by
introducing meshless shape functions into boundary integral equa-
tions. In recent years, the BNM [33], the BPIM [34] and the BEFM
[35] have been extended to 2D Signorini problems. However, these
boundary type meshless methods still involve the computation of
boundary integrals.

The method of fundamental solutions (MFS) [36,37] is a boundary
type meshless method, in which the solution is approximated as a
linear combination of fundamental solutions. The MFS eliminates the
issue of computing integrals required in the BEM and the rest
boundary type methods aforementioned. Being mathematically
simple, integration-free, easy-to-program, truly meshless and the
extensible to multidimensional problems make the MFS very attrac-
tive in solving boundary value problems. In 1998, Poullikkas et al.
pioneered the application of the MFS to 2D Signorini problems [4]. In
2001, they also applied the MFS to a special 3D Signorini problem,
known as the electropainting problem [5]. In their works, the original
problem is reformulated as a nonlinear least-squares problem
with nonlinear inequality constraints, and then solved by a special
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least-squares minimization routine to accommodate constraints.
However, the success of their application depends severely on the
quality of the optimization algorithm used to handle the nonlinear
constrained problem.

In this paper, a new application of the MFS is developed for
boundary-only analysis of Signorini problems. The numerical
formulae are valid for 2D and 3D Signorini problems and also
valid for both interior and exterior problems simultaneously. In
our application, the nonlinear boundary inequality conditions are
incorporated naturally into an iterative scheme by using a projec-
tion operator [12,13]. Then, the original Signorini problem is
transformed into a sequence of well-posed linear boundary value
problems. Finally, the MFS is used iteratively for solving these
linear problems. The application of the MFS in this paper, differs
from that in Refs. [4,5], involves only linear boundary value
problems and linear system of algebraic equations, and thus avoids
the design of a quite sophisticated and time-consuming optimiza-
tion algorithm. As a result, the present application is expected to
have higher computational speed and efficiency. Convergence and
efficiency of the present MFS is also proved theoretically and
verified numerically in detail.

The following discussions begin with a detailed numerical
implementation of the MFS for Signorini problems in Section 2.
Then, Section 3 provides the associated iterative algorithm and
convergence analysis. Finally, numerical examples and conclusions
are given in Sections 4 and 5, respectively.

2. The MFS for Signorini problems

Let Ω be a d-dimensional domain in Rd, where d¼2 or
3 denotes the spatial dimension. A generic point in Rd is denoted
as x¼ x1; x2;…; xdð ÞT or y¼ y1; y2;…; yd

� �T. Let ΓD, ΓN and ΓSa∅
be three disjointed parts constituting the boundary Γ of Ω.

Consider the following Signorini problem:

ΔuðxÞ ¼ 0; xAΩ ð1Þ

uðxÞ ¼ϕðxÞ; xAΓD ð2Þ

qðxÞ ¼φðxÞ; xAΓN ð3Þ
and

uðxÞ ¼ϕðxÞ; q xð ÞoφðxÞ; xAΓS ð4Þ
or

uðxÞoϕðxÞ; q xð Þ ¼φðxÞ; xAΓS ð5Þ
where uAH1ðΩÞ is the unknown function, q¼ ∂u=∂n is the normal
derivative of u, n¼ n1;n2;…;ndð ÞT is the unit outward normal to Γ,
and ϕAH1=2 ΓD [ ΓSð Þ and φAH�1=2 ΓN [ ΓSð Þ are prescribed
boundary functions.

To obtain the solution u in Ω, we need first to determine on
which parts of ΓS boundary conditions (4) apply, and on the
remaining parts boundary conditions (5) apply. Then, the solution
u and its derivatives inΩ can be solved using a standard numerical
method such as the FEM, the BEM and meshless methods. As a
result, the primary focus in solving Signorini problem (1)–(5) is on
the Signorini boundary of the domain and thus, the inequality
Signorini boundary conditions (4) and (5) need to be tackled
efficiently. For doing this, it can be verified firstly that conditions
(4) and (5) are equivalent to the following boundary conditions:

uðxÞrϕðxÞ; qðxÞrφðxÞ; ðuðxÞ�ϕðxÞÞðqðxÞ�φðxÞÞ ¼ 0; xAΓS

ð6Þ
Then, let [12,13]

Pa≔minða;0Þ; aAR ð7Þ

where P: R-R� [ f0g is a projection operator. And let

qðxÞ�φðxÞ ¼P½ðqðxÞ�φðxÞÞ�αðuðxÞ�ϕðxÞÞ�; xAΓS ð8Þ
where α is an arbitrary positive constant.

In light of Eq. (7), from Eq. (8) we have qrφ. If q¼φ, then
ðq�φÞ�αðu�ϕÞZ0, and thus urϕ. Otherwise, if qoφ, then
ðq�φÞ�αðu�ϕÞo0, and thus recalling again Eq. (8) leads to
u¼ϕ. As a result, from Eq. (8) we can deduce the Signorini
boundary conditions (4) and (5), and thus deduce Eq. (6). On the
other hand, from Eq. (6) we can deduce Eq. (8) immediately.
Summarizing, we have shown that Eq. (6) is equivalent to Eq. (8).

In view of Eq. (8), an implicit iterative scheme can be defined
for numerical computation as

qðkþ1ÞðxÞ ¼φðxÞþP qðkÞðxÞ�φðxÞ
� �

�α uðkþ1ÞðxÞ�ϕðxÞ
� �h i

; k¼ 0;1;2;… xAΓS

ð9Þ
where the superscript ðkÞ denotes the value at the kth iteration.

Since the projection operator P is also nonlinear, Eq. (9) cannot
be implemented directly. In this study, this operator is checked
point-wise. Let xif gNi ¼ 1 �Γ be a set of N boundary nodes which are
necessary for the implementation of the MFS. After the kth
iteration, both uðkÞ xið Þ and qðkÞ xið Þ are known for all xiAΓS. Thus,
if on ΓSN �ΓS inequality

qðkÞ xið Þ�φ xið Þ
� �

�α uðkÞ xið Þ�ϕ xið Þ
� �

40 ð10Þ

is true for all xiAΓSN , and for xiAΓSR≔ΓS\ΓSN this inequality is
false, then from Eq. (9) we use

qðkþ1Þ xið Þ ¼φ xið Þ; xiAΓSN ð11Þ
and

qðkþ1Þ xið Þ ¼ qðkÞ xið Þ�α uðkþ1Þ xið Þ�ϕðxÞi
� �

; xiAΓSR ð12Þ

for the ðkþ1Þth iteration. It should be stressed that the MFS is
incidental to check and update the inequality given by Eq. (10).

According to Eqs. (11) and (12), the original Signorini problem
(1)–(5) is reduced to the following linear problem:

Δuðkþ1ÞðxÞ ¼ 0; xAΩ ð13Þ

uðkþ1ÞðxÞ ¼ϕðxÞ; xAΓD ð14Þ

qðkþ1ÞðxÞ ¼φðxÞ; xAΓN ð15Þ

qðkþ1Þ xið Þ ¼φ xið Þ; xiAΓSN ð16Þ

αuðkþ1Þ xið Þþqðkþ1Þ xið Þ ¼ qðkÞ xið Þþαϕ xið Þ; xiAΓSR ð17Þ
where k¼ 0;1;2;…

The boundary value problem (13)–(17) is now solved using
the MFS.

With the help of the MFS, the solution of this problem can be
approximated as

uðkþ1ÞðxÞ � uðkþ1Þ
N ðxÞ ¼

XN
j ¼ 1

aðkþ1Þ
j U x; yj

� �
;

xAΩ ¼Ω [ Γ; k¼ 0;1;2;… ð18Þ
where aðkþ1Þ

j is the jth unknown coefficient at the ðkþ1Þth
iteration, yj is the source point placed on a fictitious boundary
Γ0, N is the number of source points, and

U x; yj
� �

¼ 1
2ðd�1Þπ �

� ln x�yj
�� ��; d¼ 2

1
x�yj

�� �� ; d¼ 3

8><
>:

is the fundamental solution of Laplace's equation.
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