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a b s t r a c t

Mathematical formulation and computational implementation of the stochastic spline fictitious
boundary element method (SFBEM) are presented for stochastic analysis of thin plate bending problems
with loadings and structural parameters modeled with random fields. Two sets of governing differential
equations with respect to the mean and deviation of deflection are derived by including the first order
terms of deviations. These equations are in similar forms to those of deterministic thin plate bending
problems, and can be solved using deterministic fundamental solutions. The calculation is conducted
with SFBEM, a modified indirect boundary element method (IBEM), resulting in the means and
covariances of responses. The proposed method is validated by comparing the solutions obtained with
Monte Carlo simulation for a number of example problems and a good agreement of results is observed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The structural problems with random parameters appear fre-
quently in engineering practices due to the stochastic nature of the
loadings as well as the material properties and geometric para-
meters. It is obvious that a deterministic analysis cannot capture the
random nature of the structural response, since only expectation
values rather than statistical information of the parameters are used
in the computational model. Numerical computation schemes in
the frame of finite element method (FEM) have been developed to
deal with the problems modeled with statistical nature of loads,
material properties and geometric parameters [1,2]. Due to some
inherent unique advantages [3], the boundary element method
(BEM) can be used as an alternative numerical approach to FEM for
stochastic problems and has been used in various areas [4].

Similar to the perturbation stochastic FEM, the stochastic BEM
is most commonly performed in conjunction with the perturba-
tion method. The methodology was first applied in plane elasticity
problems with random geometric configuration by Nakagiri et al.
[5] using the second-order perturbation method in combination
with the conventional BEM. Later, Kaljević and Saigal [6] adopted
the same method for elastostatic problems by modeling config-
uration as random variable and material property as random field
respectively. Kamiński has conducted various studies by using the

perturbation techniques in stochastic BEM [7–9]. The implemen-
tation of perturbation BEM and its modified methods have also
been available for stochastic groundwater flow problems [10],
stochastic seawater intrusion problems [11], stochastic potential
problems [12,13], stochastic heat transfer problems [14], stochastic
wave propagation problems [15], and dynamical problems [16].
Recently, a stochastic BEM based on the first order approximation
has been proposed by the authors for stochastic analysis of
elastostatic problems with the material properties modeled with
random fields [17].

In this paper, SFBEM is extended to stochastic analysis of thin
plate bending problems with random fields. SFBEM is a modified
approach to the conventional IBEM. In SFBEM, nonsingular integral
equations are derived using the fictitious boundary techniques, and
spline functions with excellent performance are adopted as the trial
functions to the unknown fictitious loads. Then the boundary-
segment-least-square technique is employed in SFBEM for elim-
inating the boundary residues, which leads to the numerical
solution to the integral equations. Because of these modifications,
SFBEM is of high accuracy and efficiency in general. The method
was first applied to the solution of static plane elasticity problems
[18], and so far it has been extended to multi-domain plane
problems [19], orthotropic plane problems [20], stochastic elasto-
static problems [17,21], and stochastic fracture problems [22].

First order approximation technique is adopted in the proposed
method of this paper, which is devoted to the calculation of random
solutions for thin plate bending problems with varied loads,
material properties and plate thickness modeled by random fields.
Different from the general perturbation BEM, the input parameters
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and output responses are expressed with the mean and deviation
values. They are then substituted into the stochastic governing
differential equations and relationship formulations between inter-
nal forces and deflection, and the second and higher order terms of
the deviation values are neglected, leading to two sets of equations
described with the mean and deviation value of deflection respec-
tively. As these equations have similar forms as those in the
deterministic problems, they can be solved by BEM with determi-
nistic fundamental solutions. In particular, the SFBEM is applied in
the present method for calculations of the mean and deviation
equations to achieve statistical values of responses with high
accuracy and efficiency. The feasibility and effectiveness of the pre-
sent approach are validated using several numerical examples. A
good agreement of results can be observed by comparison with the
Monte Carlo simulation.

2. Stochastic governing differential equation

Consider a thin plate with varied bending rigidity Dðx; yÞ,
subjected to a transverse load qðx; yÞ. The governing differential
equations for this plate bending problem can be expressed by
deflection as
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where μ is Poisson's ratio; ðx; yÞ is the Cartesian coordinate of a
point in the plate domain considered; and w is the deflection of
the plate.

Assuming qðx; yÞ is a general random field and Dðx; yÞ is a
homogeneous one, they can be expressed as

qðx; yÞ ¼ qEðx; yÞþδqðx; yÞ
Dðx; yÞ ¼DEþδDðx; yÞ

)
ð2Þ

where qEðx; yÞ and DE are the mean values of qðx; yÞ and Dðx; yÞ,
respectively, with DE being a constant; and δqðx; yÞ and δDðx; yÞ
represent the deviations of qðx; yÞ and Dðx; yÞ, respectively, with
their mean values being zero. Accordingly, the deflection and
internal forces are also random fields and can be written as

wðx; yÞ ¼wEðx; yÞþδwðx; yÞ
Qxðx; yÞ ¼QxEðx; yÞþδQxðx; yÞ
Qyðx; yÞ ¼ QyEðx; yÞþδQyðx; yÞ
Mxðx; yÞ ¼MxEðx; yÞþδMxðx; yÞ
Myðx; yÞ ¼MyEðx; yÞþδMyðx; yÞ
Mxyðx; yÞ ¼MxyEðx; yÞþδMxyðx; yÞ
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where Qx and Qy are shear forces; Mx and My are bending
moments; Mxy is torsional moment; ð�ÞE represents the mean
value, and δð�Þ represents the deviation with the mean value
equaling to zero.

Substituting Eqs. (2) and (3) into Eq. (1), and neglecting the
second order terms of the deviations and their derivatives, one can
obtain
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Taking the expectances of terms on both sides of Eq. (4), one
has

DE∇4wE ¼ qE ð5Þ

Substitution of Eq. (5) into Eq. (4) yields

DE∇4δw¼ δf ð6Þ
where δf ðx; yÞ is the equivalent transverse load and can be
expressed as
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Note that Dðx; yÞ can be expressed by the elasticity modulus
Eðx; yÞ and the plate thickness hðx; yÞ as

Dðx; yÞ ¼ Eðx; yÞ½hðx; yÞ�3
12ð1�μ2Þ ð8Þ

Assuming Eðx; yÞ and hðx; yÞ are homogeneous random fields,
they can be expressed as

Eðx; yÞ ¼ EEþδEðx; yÞ
hðx; yÞ ¼ hEþδhðx; yÞ

)
ð9Þ

where EE and hE are the mean values of Eðx; yÞ and hðx; yÞ,
respectively, with EE and hE being constants; and δEðx; yÞ and
δhðx; yÞ represent the deviations of Eðx; yÞ and hðx; yÞ, respectively,
with their mean values being zero. Substituting Eqs. (2) and (9)
into Eq. (8), and neglecting the second and higher order terms of
the deviations, one has

DEþδD¼ EEh
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Taking the expectances of terms on both sides of Eq. (10), one
obtains
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Substitution of Eq. (11) into Eq. (10) yields
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It can be seen from Eqs. (11) and (12) that DE and δD can now
be expressed using the means and deviations of the elasticity
modulus and the plate thickness, respectively. Accordingly, Eqs.
(5)–(7) can also be expressed by the means and deviations of the
elasticity modulus and the plate thickness using the above
equations. Substituting Eq. (11) into Eq. (5), one has
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Substituting Eqs. (11) and (12) into Eqs. (6) and (7), one can
obtain
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and
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