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a b s t r a c t

This paper proposes a numerical method based on the dual reciprocity boundary elements method
(DRBEM) to solve the stochastic partial differential equations (SPDEs). The concept of dual reciprocity
method is used to convert the domain integral to the boundary. The conventional DRBEM starts with
approximation of the source term of the original PDEs with radial basis functions (RBFs). Due to the fact
that the nonhomogeneous term of SPDEs considered in this paper involves Wiener process, the
traditional DRBEM cannot be applied. So a modification of it is suggested that has some advantages in
comparison with the traditional DRBEM and can be developed for solving the SPDEs.

The time evolution is discretized by using the finite difference method, while the modified DRBEM is
proposed for spatial variations of field variables. The noise term is approximated at the collocation points
at each time step. We employ the generalized inverse multiquadrics (GIMQ) RBFs to approximate
functions in the presented technique. To confirm the accuracy of the new approach, several examples are
employed and simulation results are reported. Also the convergence of the new technique is studied
numerically.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Stochastic partial differential equations (SPDEs) provide a
quantitative description for mathematical models in areas such
as physics, engineering, biology, geography and finance. Actually
many phenomena, both in nature and engineering which are
described by deterministic partial differential equations (PDEs),
can be more fully modeled by systems of SPDEs, for instance see
[1]. For example the authors of [52] suggest the use of a model
based on the spatially inhomogeneous, nonlinear Smoluchowski
equations with random initial distribution to describe the annihi-
lation of spatially separate electrons and holes in a disordered
semiconductor. Also the Lagrangian stochastic models are sug-
gested for simulating the transport of particles in turbulent flows
in [53]. For another example stochastic cable equation arises in
neurophysiology. This particular example cames up in connection
with a study of neurons. These nerve cells are the building blocks
of the nervous system, and operate by a mixture of chemical,
biological and electrical properties, for more details see [55]. The
elliptic SPDEs occur for example in random vibrations, seismic

activity, oil reservoir management and composite materials, see
for example [6,28,29] and the references therein.

The initial and boundary value problems of SPDEs have been
studied theoretically, for example see [19,22,55]. However, it is
difficult to obtain the analytical solutions of SPDEs. So, the
numerical solution of SPDEs becomes a fast growing research
area. The finite difference and finite element methods [2,13], the
Wiener chaos expansion [39], the stochastic spectral collocation
method [45], the Itô Taylor expansions method [40] are discussed
for approximating SPDEs arising in engineering and science.
Another numerical technique that has been applied for solving
SPDEs is based on the meshless methods. Meshless methods have
been applied for the numerical solution of time-dependent SPDEs
[20,59] and for time-independent SPDEs [30]. Also meshless
methods applied for the numerical solution of nonlinear SPDEs
[60]. In addition, references [11,12,35] provide useful works in the
numerical solution of stochastic differential equations.

The boundary elements method (BEM) has become powerful tool
for the numerical study of some engineering problems modeled by
deterministic [3–5,8,10,23–26,38] and stochastic [16,32,41,42,49] PDEs.
The main idea in this method is to convert the original PDE to an
equivalent boundary integral equation by using Green's theorem and a
fundamental solution of the original equation. Consequently the main
advantage in this method over the classical domain methods such as
finite element, finite difference and finite volume methods is that only
boundary discretization is required due to dimension reduction. The
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BEM requires a fundamental solution to the original differential
equation in order to avoid domain integrals in the formulation of
the boundary integral equation, which is one of the drawbacks of the
BEM. Another drawback is that nonhomogeneous and nonlinear terms
are incorporated in the formulation by means of domain integrals. The
use of cells to evaluate these domain integrals implies an internal
discretization which considerably increases the quantity of data
necessary to run a problem. Thus, the method loses the attraction of
its boundary-only character in relation to the other domain decom-
position methods. One of the most efficient methods to eliminate the
domain integrals is the dual reciprocity BEM (DRBEM) [17,18,24]. The
main idea behind this approach is to approximate inhomogeneous
term of the considered PDEs by interpolation in terms of some well-
known functions ϕðrÞ, named radial basis functions (RBFs) [36]. There
exists a large class of interpolating RBFs [46] that can be used by
DRBEM. Some well-known RBFs [54] that are employed as approx-
imate function in DRBEM are listed bellow:

� Linear: 1þr.
� The thin plate spline: r2nlog ðrÞ; n¼ 1;2;….
� The Gaussian: expð�cr2Þ.
� The multiquadrics:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
.

� The inverse multiquadrics: 1ffiffiffiffiffiffiffiffiffiffi
r2 þ c2

p .

� The generalized inverse multiquadrics: 1
ðr2 þ c2Þ2.

where r is the distance between a source point and the field point
and c is a constant shape parameter.

1.1. Problem setting

Suppose that D�R2 is a regular open bounded domain and H
is a separable Hilbert space of function defined on D. The main
concern in this paper is solving the following parabolic SPDEs
[7,19,20,22,61,57,58]:

du¼ ðΔuþ f Þ dtþσdWðtÞ in D; 0otoT ;

uðx;0Þ ¼ u0AH; xAD;

uðx; tÞ ¼ g; xA∂D;

8><
>: ð1Þ

where W is a Wiener process defined on filtered probability space
ðΩW ;FW ; fF tg1t ¼ 0;PW Þ with mean zero and spatial covariance
function q given by

EðWðt; xÞWðs; yÞÞ ¼minft; sgqðx; yÞ; x; yAD; t; s40:

In addition, Δ is the Laplace operator, σ40 and the functions f and
g are given such that the problem (1) has a unique solution [19].
The existence, uniqueness and properties of the solutions of such
equations have been well studied, for instance see Da Prato and
Zabczyk [22], Walsh [55], etc. Allen et al. [2], Davie and Gaines
[21], Du and Zhang [27], Gyöngy [31], Hausenblas [33,34], Kloeden
and Shott [47], Lord and Rougemont [48], Cialenco et al. [20], Ye
[59,61] and Yan [57,58] are some works on the numerical solution
of Eq. (1).

In this paper we employ a modification of the conventional
DRBEM for the numerical solution of Eq. (1). The modified DRBEM
is a BEM-like meshless method. Some other BEM-like meshless
method such as method of fundamental solution [15], boundary
knot method [14,37] and singular boundary method [56] have
been widely used in the literatures for solving engineering
problems. Also a mesh-free stochastic boundary method based
on randomized versions of the method of fundamental solutions
was presented in [51]. The organization of the current paper is as
follows:

In Section 2 we mention some drawback of the traditional
DRBEM and explain why the conventional DRBEM cannot be

applied for the numerical solution of SPDEs. So in Section 3 a
modification of the conventional DRBEM for solving the determi-
nistic PDEs is suggested. The proposed idea can be developed for
solving SPDEs easily. So, the stochastic Poisson and stochastic heat
equations are solved via the method developed in Section 4.
Section 5 contains numerical experiments which show the hight
performance of the presented method.

2. Motivation

Suppose D�R2 is a bounded computational domain with
piecewise smooth boundary Γ. Consider the following Poisson
equation:

Δu¼ b in D�R2;

u¼ u on Γu;
∂u
∂n

¼ un on Γun ;

8>>><
>>>:

ð2Þ

when u and un are known values of potential and flux, respec-
tively, b is a known function of position, n is the outward normal
vector over the boundary Γ ¼Γu [ Γun .

Suppose Gi ¼ Giðx; yÞ be the fundamental solution of Laplace
equation based on the source point ðxi; yiÞ, i.e.

ΔGi ¼ δðx�xi; y�yiÞ; ð3Þ
where δðx; yÞ is the Dirac delta function, and ðxi; yiÞ and (x,y) are
source and field points, respectively. It is well-known that the
fundamental solution for 2D Laplace equation based on the source
point ðxi; yiÞ is reported as [44]

Giðx; yÞ ¼ 1
2π

lnðrÞ; ð4Þ

where r is the distance between the field point ðx; yÞ and the

source point ðxi; yiÞ, i.e. r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�xiÞ2þðy�yiÞ2

q
. Multiplying the

first equation of Eqs. (2) with the weighting function Gi and
applying Green's second theorem lead to the integral formulation

ciuiþ
Z
Γ

Gi∂u
∂n

�u
∂Gi

∂n

 !
dΓ ¼

Z
D
bGidD; ð5Þ

where ci ¼ 1
2πα0 such that α0 is the internal angle of the boundary

at the source point [43]. It is well-known that α0 ¼ 2π when the
collocation point is inside Ω and α0 ¼ π when it is located on the

smooth parts of Γ [9,43].
The domain integral on the right hand side of Eq. (5) still

remains in the BEM, this integral can be evaluated by dividing the
domain into cells [46]. The motivation behind DRBEM is to avoid
this procedure by transforming the domain integral to an equiva-
lent boundary integral. This can be achieved by approximating the
function b in terms of RBFs at some chosen number of boundary
(N) and internal (L) nodes in the domain. So the function b can be
expressed as

b¼
XNþ L

j ¼ 1

αjϕj; ð6Þ

where ϕj represents the interpolation function, ϕ, from a field
node to source node, i.e.

ϕj≔ϕðJx�xj J Þ; x; xjAD;

where Jx�xj J denotes the distance between x and xj and
αj; j¼ 1;…;NþL, are the corresponding interpolating coefficients.
The essential feature in DRBEM is to express ϕj, which is a function
of rj, as a Laplacian of another function ψj. Thus ψj is chosen as the

M. Dehghan, M. Shirzadi / Engineering Analysis with Boundary Elements 58 (2015) 99–111100



Download	English	Version:

https://daneshyari.com/en/article/512181

Download	Persian	Version:

https://daneshyari.com/article/512181

Daneshyari.com

https://daneshyari.com/en/article/512181
https://daneshyari.com/article/512181
https://daneshyari.com/

