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a b s t r a c t

In this work, a simple accurate formula is presented to evaluate the origin intensity factor of the singular
boundary method (SBM) for two-dimensional Dirichlet potential problems. The SBM is considered as an
improved version of the method of fundamental solutions and remedies the controversial auxiliary
boundary outside the computational domain in the latter. The origin intensity factor is a central concept
in the SBM to overcome the source singularity of the fundamental solution while placing source points
on the physical boundary. In literature, the origin intensity factor for the Dirichlet boundary condition is
numerically obtained which may cause numerical instability in large-scale simulations. This work
proposes a simple formula to calculate the origin intensity factor for two-dimensional Dirichlet potential
problems. Numerical experiments show that it is feasible and perform robustly for problems under
various irregular domains.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The method of fundamental solutions (MFS) [1,2] is a typical
meshless boundary collocation method. The method is also known
under several other names, such as the F-Trefftz method, a super-
position method, a charge simulation method and a method of
auxiliary source, etc. Like the boundary element method (BEM)
[3,4], the MFS also employs the fundamental solution to reduce
computational problem dimensionality by one and is readily
applicable to boundary value problems (BVPs) in which the
fundamental solution of the governing differential operator is
accessible. The MFS avoids the numerical integration and mesh
generation and is very attractive to solve high-dimensional pro-
blems [2,5–8]. However, in order to avoid the source singularity of
fundamental solutions, the source points are positioned on an
auxiliary boundary outside the computational domain of interest.
The location of the auxiliary boundary is a perplexing and
controversial issue associated with the traditional MFS, especially
in practical problems with complex-shaped or multi-connected
domains. Even though a lot of researchers in recent decades focus
their study on this issue [2,9,10], an optimal placement in general

is not achieved. Until now, the determination of the auxiliary
boundary is largely based on practitioner's experience and trial-
error approaches.

In recent years, considerable efforts are devoted to eliminating
the troublesome auxiliary boundary in the MFS. Some papers
[11,12] employ an alternative nonsingular kernel function to cir-
cumvent this problem, but the derivation of nonsingular functions
for different problems [13] posses another challenge. On the other
hand, some methods are proposed to remedy the source singularity
with desingularization techniques, such as the regularized meshless
method (RMM) [14,15], the modified method of fundamental
solution (MMFS) [16], the boundary distributed source method
(BDS) [17] and the singular boundary method (SBM) [18,19].

This study is concerned with the singular boundary method, in
which the origin intensity factor (OIF) plays a central role to
eliminate the fictitious boundary in the MFS. The existence of the
OIF is firstly verified through diverse numerical experiments. In
the literature, the inverse interpolation technique (IIT) [20,21] is a
standard approach to evaluate the OIF. In the case of the Neumann
boundary condition, a more accurate and efficient technique is
proposed to evaluate the OIF via a subtracting and adding-back
technique [22]. However, in case of the Dirichlet boundary condi-
tion, the IIT remains the method of choice. The IIT amounts to
solving the matrix system twice and is thus computationally more
expensive, in particular, in conjunction with fast algorithms
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[23,24] for dense matrix equations such as the fast multipole
method for larger scale problems. In some cases, the IIT may also
cause numerical instability.

This paper proposes a simple formula of the OIF for two-
dimensional Dirichlet potential problems. Some numerical experi-
ments are studied to show its robustness and feasibility to
complex-shaped geometries. The present technique is numerically
more stable than the IIT for Dirichlet potential problems and
improves the efficiency of the SBM. The numerical results also
demonstrate that the present SBM outperforms the modified
method of fundamental solutions (MMFS) and the boundary
distributed sources method (BDS) on accuracy and convergence.

The rest of the paper is constructed as following: in Section 2,
the SBM for potential problems is formulated. In Section 3, a simple
strategy is proposed for the determination of the OIF for Dirichlet
boundary potential problems. Section 4 examines several bench-
mark numerical examples to illustrate the validity of the present
OIF. And finally, some conclusions are summarized in Section 5.

2. SBM formulation

Let us consider a two-dimensional potential problem governed
by Laplace equation

∇2uðxÞ ¼ 0; x¼ ðx1; x2ÞAΩ ð1Þ

with boundary conditions

uðxÞ ¼ hDðxÞ; x�ΓD;

qðxÞ ¼ ∂uðxÞ
∂n

¼ hNðxÞ; x�ΓN ; ð2Þ

where u is the potential, q is the flux, x means the spatial
coordinates, and n is the outward normal vector, hDðxÞ and hNðxÞ
stand for measured data specified on the boundary, Ω is a
computational domain as shown in Fig. 1 and ∂Ω¼ΓD [ ΓN

denotes the whole physical boundary.
In the MFS, the solution of the problem (1)–(2) is expanded as a

linear combination of the fundamental solution in terms of the
source points as follows:

uðxiÞ ¼
XN
j ¼ 1

αjGðxi; sjÞ; ð3Þ

qðxiÞ ¼
XN
j ¼ 1

αj
∂Gðxi; sjÞ

∂n
; ð4Þ

where Gðx; sÞ is the fundamental solution of the governing equa-
tion, Gðx; sÞ ¼ ð1=2πÞlog ð1=rðx; sÞÞ for two-dimensional potential
problems, rðx; sÞ is the distance between source points s and
collocation points x, αj

� �
the unknown coefficients to be deter-

mined. Substituting Eqs. (3) and (4) into boundary conditions (2),
we obtain a matrix system

Aα¼ b; ð5Þ
where

Aij ¼
Gðxi; sjÞ; xiAΓD

∂Gðxi ;sjÞ
∂n ; xiAΓN

(
; bi ¼

hDðxiÞ; xiAΓD

hNðxiÞ; xiAΓN

(
: ð6Þ

After determining the coefficients αj
� �

with solving matrix
system (5), we obtain the potential and flux with Eqs. (3) and (4).
In the MFS, source points are collocated on an auxiliary boundary
outside the computational domain (see Fig. 1(a) and (b)) to
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Fig. 1. Computational domain: (a) interior problems for MFS; (b) exterior problems for MFS; (c) interior problems for SBM; and (d) exterior problems for SBM.
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