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a b s t r a c t

In this paper the stochastic spline fictitious boundary element method (SFBEM) is presented for
reliability analysis of Reissner plate bending problems in conjunction with the first-order reliability
method (FORM). As a modified method for the conventional indirect boundary element method, SFBEM
has been proved to be accurate and efficient in deterministic analyses. For the purpose of structural
reliability analysis, SFBEM is introduced during the iteration process performed in the FORM to obtain
the required values of structural responses and their derivatives with respect to the random variables
considered. In particular, the gradient formulation for the Reissner plate bending problem has been
derived using SFBEM in the current study. The present approach is validated with several numerical
examples and a good agreement with solutions of the Monte Carlo simulation is observed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

With an increasing demand for structural design, much work has
been devoted to the problem of structural reliability. Many solution
schemes of structural reliability have been developed in the frame-
work of the finite element method (FEM) for its wide utilization in
the deterministic region [1]. As compared with FEM, boundary
element method (BEM) has emerged as a powerful tool for structural
analysis for its unique advantages, for example, the discretization of
the boundary that leads to significantly smaller systems of equations
and the use of fundamental solutions for the infinite media that leads
to a higher accuracy. This indicates that BEM could be used as an
alternative numerical method for probabilistic structural analysis.
Stochastic BEM has been successfully applied in solving stochastic
elastostatic problems [2–4], stochastic elastodynamic problems [5],
stochastic wave motion problems [6], stochastic potential problems
[7], stochastic heat conduction problems [8], and stochastic ground-
water flow problems [9], etc. Although much research has been
devoted to BEM for stochastic analysis of various problems, little
attention has been paid to the application of BEM to structural
reliability analysis. Recently, a stochastic BEM has been proposed by
the authors for reliability analysis of plane elasticity problems [10]
and linear-elastic cracked structures [11].

The SFBEM is a modified indirect boundary element method. In
SFBEM, nonsingular integral equations are derived using the fictitious

boundary techniques, and spline functions with excellent performance
are adopted as the trial functions to the unknown fictitious loads. Then
the boundary-segment-least-square technique is employed for elim-
inating the boundary residues, which leads to the numerical solution
to the integral equations. Because of these modifications, SFBEM is of
high accuracy and efficiency in general. SFBEMwas first applied to the
solution of static plane elasticity problems [12], and so far it has been
extended to multi-domain plane problems [13], orthotropic plane
problems [14], plate bending problems [15], elastic fracture problems
[16,17], stochastic elastostatic problems [4], and structural reliability
problems [10,11].

In this paper, following the similar framework used in Ref. [10],
a stochastic SFBEM is presented for reliability analysis of Reissner
plate bending problems in conjunction with the FORM. SFBEM is
incorporated into the iteration process of the FORM to calculate
the required structural responses and their derivatives with
respect to the random variables considered. The use of SFBEM in
the formulation of the FORM makes it unnecessary to construct an
explicit expression to the implicit limit state function of the
problem, leading to a higher efficiency and better accuracy. The
present approach is validated by comparing calculated solutions
with those of Monte Carlo simulation for a number of example
problems and a good agreement of the results is achieved.

2. SFBEM for analysis of Reissner plate bending problems

The Reissner plate bending theory is applicable to the analysis
of thick plate bending problems since it can consider transverse
shear deformation of the plate. In this theory, three boundary
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conditions rather than two boundary conditions as used in the
Kirchhoff thin plate theory are adopted, which can reflect the real
boundary conditions better.

Consider an elastic plate domain with I subdomains, each of
which is of uniform property and thickness and is supported by
elastic foundation. Let the boundary of the ith subdomain Ωi be Li,
and suppose the body forces and the stiffness coefficient of
foundation within Ωi are Fli and kiði¼ 1;2;…; I; l¼ 1;2;3Þ,
respectively, as shown in Fig. 1. Using the Winkler model, the
reaction of the foundation can be expressed as �kiw with w being
the deflection of the plate. Embed Ωi into an infinite plate domain
with the same property and thickness as in Ωi, and apply
unknown fictitious loads Xl

i ðl ¼ 1;2;3Þ along a fictitious boundary
Si outside Ωi, whose shape is similar to that of the real boundary
Li, as also shown in Fig. 1. Then, under the combined action of the
body forces Fli, the foundation reaction �kiw and the fictitious
loads Xl

i, the components of displacement and internal force at any
point P0 in the infinite domain corresponding toΩi are as follows:

RðP0Þ ¼ ∑
3

l ¼ 1

Z
Si
Gl
R;iðP0;Q ÞXl

iðQ Þdsþ ∑
3

l ¼ 1
∬Ωi

Gl
R;iðP0;Q0ÞFliðQ0ÞdΩ

�∬Ωi
G1
R;iðP0;Q0ÞkiðQ0ÞwðQ0ÞdΩ

ði¼ 1;2;…; IÞ ð1Þ
where QASi; Q0AΩi; R¼w;θx;θy;Qx;Qy;Mx;My and Mxy; and
Gl
R;i� functions are fundamental solutions of Reissner plate bend-

ing problems [18].
Substituting Eq. (1) into the homogeneous boundary conditions

along Li ði¼ 1;2;…; IÞ, one has

∑
3

l ¼ 1

Z
si
Gl
k;iðP;Q ÞXl

iðQ Þdsþ ∑
3

l ¼ 1
∬Ωi

Gl
k;iðP;Q0ÞFliðQ0ÞdΩ

�∬Ωi
G1
k;iðP;Q0ÞkiðQ0ÞwðQ0ÞdΩ¼ 0

ði¼ 1;2;…; I; k¼ 1;2;3Þ ð2Þ
where PALi and k is for the three boundary conditions along Li for
Reissner plate bending problems; and Gl

k;i are the kernel functions
depending on the fundamental solutions and boundary conditions.

Dividing the domain into I subdomains, one may assume that
there are J common boundaries and the jth boundary Γj is
the boundary between the j1th and j2th subdomains (j¼ 1;2;…;

J; j1; j2A ½1;2;…; I�). Substituting Eq. (1) into the continuity and
equilibrium conditions along Γj, one has

∑
3

l ¼ 1

Z
Sj1

glk;j1 ðp;Q1ÞXl
j1
ðQ1Þdsþ ∑

3

l ¼ 1
∬Ωj1

glk;j1 ðp;Q01ÞFlj1 ðQ01ÞdΩ

�∬Ωj1
g1k;j1 ðp;Q01Þkj1 ðQ01ÞwðQ01ÞdΩ

¼ ∑
3

l ¼ 1

Z
Sj2

glk;j2 ðp;Q2ÞXl
j2
ðQ2Þdsþ ∑

3

l ¼ 1
∬Ωj2

glk;j2 ðp;Q02ÞFlj2 ðQ02ÞdΩ

�∬Ωj2
g1k;j2 ðp;Q02Þkj2 ðQ02ÞwðQ02ÞdΩ

ðj¼ 1;2;…; J; k¼ 1;2;…;6Þ ð3Þ

where pAΓj; Q1ASj1 ; Q2ASj2 ; Q01AΩj1 ; Q02AΩj2 ; and k is for the
three continuity conditions and three equilibrium conditions along
Γj; and glk;j1 and glk;j2 are kernel functions depending on the funda-
mental solutions and the continuity and equilibrium conditions.

Eqs. (2) and (3) are nonsingular fictitious boundary integral
equations because the source points will never coincide with the
field points in the kernel functions. These equations can be solved
numerically. Expressing the unknown fictitious load functions Xl

i
in terms of a set of B-spline functions and letting the integrations
of the residues along each segment on boundary Li and common
boundary Γj equal zero, one can get

½Gi�fXigþfBig�½Ki�fwig ¼ f0g ði¼ 1;2;…; IÞ ð4Þ
for Eq. (2) and

½gj1 �fXj1 gþfbj1 g�½kj1 �fwj1 g ¼ ½gj2 �fXj2 gþfbj2 g�½kj2 �fwj2 g ðj¼ 1;2;…; JÞ ð5Þ
for Eq. (3), where fXig, fXj1 g and fXj2 g denote the column matrices
consisting of the unknown spline node parameters of the fictitious
loads along Si, Sj1 and Sj2 ; ½Gi�, ½gj1 � and ½gj2 � denote the influence
matrices of fXig, fXj1 g and fXj2 g, respectively; fwig, fwj1 g and fwj2 g
denote the column matrices consisting of the unknown deflections
at different points within Ωi, Ωj1 and Ωj2 ; ½Ki�, ½kj1 � and ½kj2 � denote
the influence matrices of fwig, fwj1 g and fwj2 g, respectively; fBig,
fbj1 g and fbj2 g denote the known column matrices depending on
the body forces within Ωi, Ωj1 and Ωj2 .

According to the numbering of the subdomains and the
common boundaries considered, all equations in Eqs. (4) and (5)
can be combined into one global equation system as

½G�fXgþfBg�½K�fwg ¼ f0g ð6Þ
where fXg ¼ ½fX1gT fX2gT⋯fXIgT �T ; fwg ¼ ½fw1gT fw2gT⋯fwIgT �T ; ½G� is
dependent on ½Gi� ði¼ 1;2;…; IÞ and ½gj1 � and ½gj2 � ðj¼ 1;2;…; JÞ in
Eqs. (4) and (5), respectively; fBg is dependent on fBig ði¼ 1;2;…; IÞ
and fbj1 g and fbj2 g ðj¼ 1;2;…; JÞ in Eqs. (4) and (5), respectively; K½ �
is dependent on Ki½ � ði¼ 1;2;…; IÞ and ½kj1 � and ½kj2 � ðj¼ 1;2;…; JÞ in
Eqs. (4) and (5), respectively.

There are two unknown column matrices fXg and fwg in Eq. (6).
Therefore, an additional equation system should be supplemented
to solve the problem. Using Eq. (1) and considering the deflection
responses, one can easily obtain

fwg ¼ ½Gw�fXgþfBwg�½Kw�fwg ð7Þ
where ½Gw� and ½Kw� are the influence matrices corresponding to
fwg; and fBwg is the known column matrix due to the body forces.
From Eq. (7), we have

fwg ¼ ½ ~K ��1ð½Gw�fXgþfBwgÞ ð8Þ
where

½ ~K � ¼ ½I�þ½Kw� ð9Þ
and ½I� denotes the unit matrix with the same order as that of ½Kw�.

Substituting Eq. (8) into Eq. (6) yields

½A�fXgþfCg ¼ f0g ð10Þ
where

½A� ¼ ½G��½K�½ ~K ��1½Gw�
fCg ¼ fBg�½K�½ ~K ��1fBwg

)
ð11Þ

Usually Eq. (10) needs to be solved on a least-squares basis as
generally overdeterminate collocation is conducted to get a better
solution at fewer fictitious boundary elements. The least-squares-
based solution to Eq. (10) is [13]

fXg ¼ �½A�þ fCg ð12Þ
where

½A�þ ¼ ð½A�T ½A�Þ�1½A�T ð13Þ
Fig. 1. The ith subdomain and its fictitious boundary.
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