
The numerical solution of Cahn–Hilliard (CH) equation in one, two
and three-dimensions via globally radial basis functions (GRBFs)
and RBFs-differential quadrature (RBFs-DQ) methods

Mehdi Dehghan n, Vahid Mohammadi
Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University of Technology, No. 424, Hafez Ave., 15914 Tehran,
Iran

a r t i c l e i n f o

Article history:
Received 26 June 2014
Received in revised form
16 October 2014
Accepted 16 October 2014
Available online 25 November 2014

Keywords:
The Cahn–Hilliard (CH) equation
Radial basis functions (RBFs)
RBFs-DQ
Multiquadrics (MQ)
Condition number
Parallel computing tool box
Predictor–corrector procedure
Three-dimension

a b s t r a c t

The present paper is devoted to the numerical solution of the Cahn–Hilliard (CH) equation in one, two
and three-dimensions. We will apply two different meshless methods based on radial basis functions
(RBFs). The first method is globally radial basis functions (GRBFs) and the second method is based on
radial basis functions differential quadrature (RBFs-DQ) idea. In RBFs-DQ, the derivative value of function
with respect to a point is directly approximated by a linear combination of all functional values in the
global domain. The main aim of this method is the determination of weight coefficients. GRBFs replace
the function approximation into the partial differential equation directly. Also, the coefficients matrix
which arises from GRBFs is very ill-conditioned. The use of RBFs-DQ leads to the improvement of the ill-
conditioning of interpolation matrix RBFs. The boundary conditions of the mentioned problem are
Neumann. Thus, we use DQ method directly on the boundary conditions, which easily implements RBFs-
DQ on the irregular points and regions. Here, we concentrate on Multiquadrics (MQ) as a radial function
for approximating the solution of the mentioned equation. As we know this radial function depends on a
constant parameter called shape parameter. The RBFs-DQ can be implemented in a parallel environment
to reduce the computational time. Moreover, to obtain the error of two techniques with respect to the
spatial domain, a predictor–corrector scheme will be applied. Finally, the numerical results show that
the proposed methods are appropriate to solve the one, two and three-dimensional Cahn-Hilliard (CH)
equations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The CH equation is a forth-order nonlinear partial differential equation as follows [53,89]:

∂uðx; tÞ
∂t

¼∇ � ðM∇ðF 0ðuðx; tÞÞ�ε2∇2uðx; tÞÞÞ; uðx; tÞA ½�1;1�; xAΩ; ð1:1Þ

where uðx; tÞ is the concentration of a component within a binary mixture, F 0ðuðx; tÞÞ is a free energy function, and ϵ is the gradient
interfacial energy coefficient. Also, M is a constant mobility. The split form of the CH equation is [53,89]

∂uðx; tÞ
∂t

¼M∇2μðx; tÞ;
μðx; tÞ ¼ F 0ðuðx; tÞÞ�ε2∇2uðx; tÞ;

8<
: ð1:2Þ

where μ is the local chemical potential. The boundary conditions of (1.2) are homogenous Neumann boundary as follows:

∇u � n¼∇μ � n¼ 0; ð1:3Þ

where ∇u and ∇μ are gradient vectors and n is the outward unit normal vector on ∂Ω. As is said in [73], the CH equation arises from the
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Ginzburg–Landau free energy

EðuÞ≔
Z
Ω

FðuÞþε2

2
j∇uj2

� �
dx; ð1:4Þ

where Ω�Rnðn¼ 1;2;3Þ. Note that there are different types of the free energy such as [53,60,89]

FðuÞ ¼ 1
4 u

2ð1�uÞ2; FðuÞ ¼ 1
4 ðu4�2u2Þ; FðuÞ ¼ 1

4 ð1�u2Þ2; ð1:5Þ
or logarithmic free energy [73,89] i.e.

FðuÞ ¼ Aðu lnðuÞþð1�uÞlnð1�uÞþBuð1�uÞÞ: ð1:6Þ
As is said in [89], in Eq. (1.6), the constant B is a notion of the interaction between components, i.e. miscibility. Also when B is negative,
components are miscible, while when B is positive, the components repel each other. The degree of miscibility can change with external
conditions, e.g. temperature, concentration or pressure. Also the CH equation describes the evolution of the system which follows energy
minimization while conserving mass [89]. In this paper we use Eq. (1.5) as the free energy.

1.1. The CH equation and its applications

The CH equation was originally proposed by Cahn and Hilliard to model the spinodal decomposition and coarsening phenomena
observed in binary alloys [12,13]. Also, the CH equation is used by Anders et al. to describe laser-induced restructuring of thin polymer
films [3,4]. As is said in [60], one of the essential concepts of the CH equation is the interface between two phases which said α and β. It
has a finite thickness in which the composition c changes gradually. When the binary system approaches near the equilibrium state
composed of α phase with c¼ ceqα and β phase with c¼ ceqβ 4ceqα , the domains where cðx; tÞ ¼ ceqα and cðx; tÞ ¼ ceqβ correspond to the α and β
phases, respectively, whereas the region where uðx; tÞ varies gradually from ceqα to ceqβ represents the interface between the α and β phases
(see Fig. 1).

Also for simulating microstructural evolution, using the CH equation makes the avoidance of explicit tracking of the interface [60]. As is
mentioned in [60], this concept of a diffuse interface has been adopted to model various physical phenomena involving moving interfaces, in
which the order parameter, or phase field ϕðx; tÞ, instead of the composition field uðx; tÞ, is introduced to describe the spatial distribution of
the entire microstructure of a system. Some applications of the CH equation are pointed in [53] such as the phase separation of binary and
ternary liquid mixture [1,70], multi-phase fluid flows [9,57,54,55], Taylor flow in mini/microchannels [38], two-layer flow in channels with
sharp topographical features [95], spinodal decomposition with composition-dependent heat conductivities [69], phase decomposition and
coarsening in solder balls [2], the thermal-induced phase separation phenomenon [83], the evolution of arbitrary morphologies and complex
microstructures such as solidification, solid-state structural phase transformations [14,40,47,65], meta-stable chemical composition modula-
tions in the spinodal region [39], modeling of martensitic phase transformation [66], grain growth [92], pore migration in a temperature
gradient [93], image in painting [7,8], and tumor growth [17,88]. Other applications of CH equation also are image processing [27], planet
formation [84] and cancer growth [59].

1.2. The literature review

In this subsection we briefly review the numerical methods for solving the CH equation. Various numerical methods have been
developed for solving the mentioned equation in recent years. Some of these methods are Galerkin finite element method [29,30], second-
order splitting method [31], nonconforming finite element method [32], numerical analysis with a logarithmic free energy [18],
unconditionally gradient stable scheme [33], semi-implicit Fourier-spectral method [15,96], stable and conservative finite difference
technique [37], conservative multigrid method [56], discontinuous Galerkin method [86], moving mesh method [35], adaptive mesh
refinement idea [88], boundary integral method [19], local discontinuous Galerkin method [90], large time-stepping method [43],
isogeometric analysis procedure [41], strongly anisotropic CH equation by an adaptive nonlinear multigrid method [87], conservative
scheme with contact angle boundary condition [58], conservative scheme with Neumann and Dirichlet boundary conditions in complex

Fig. 1. Two phase microstructure with order parameter u [60].
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