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Simple and multiple linear regression: sample size considerations
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Abstract

Objective: The suggested “two subjects per variable” (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring
out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression.

Study Design and Setting: This article distinguishes two of the major uses of regression models that imply very different sample size
considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing “‘expo-
sure” (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre
guides clinical practice. It addresses Y levels for individuals with different covariate patterns or “‘profiles.” It focuses on the profile-specific
(mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates.

Results and Conclusion: By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple
regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research gen-
res. © 2016 Elsevier Inc. All rights reserved.
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1. Introduction and background

The suggested “two subjects per variable” (2SPV) rule
of thumb in the Austin and Steyerberg [1] article is a chance
to bring out some long-established and quite intuitive sam-
ple size considerations for both simple and multiple linear
regression. The basis for these considerations is becoming
increasingly obscured by the use of specialized black-box
power-and-sample size software, by reliance on rules of
thumb based on very specific and not always informative nu-
merical simulations, and by limited coverage of the structure
of the variance formulae behind the regression outputs.

By way of orientation, it is important to distinguish two
major uses of regression models; they imply very different
sample size considerations, neither served well by the
2SPV rule. The first is etiological research, which contrasts
mean Y levels at differing “exposure” (X) values and thus
tends to focus on a single regression coefficient; I will deal
later with the sample size issues for this genre, particularly
in (nonexperimental) etiological research involving adjust-
ment for confounders. I will begin with statistical
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considerations for a second research genre, one that guides
clinical practice. This type of research addresses Y levels
for individuals with different covariate patterns or “pro-
files.” It focuses on the profile-specific (mean) Y levels
themselves, estimating them via linear compounds, that is,
combinations of regression coefficients and covariate values.

2. Sample size issues in fitting ‘“clinical prediction”
models

In the “clinical prediction” models used in Steyerberg’s
2012 book [2] to estimate diagnostic and prognostic prob-
abilities, the ““Y”’ is binary. The antilogit of the fitted linear
compound yields the fitted mean Y at any specific profile
(covariate pattern) and serves as the estimated probability
for that profile. Assuming that the statistical model is
appropriate and that the setting remains the same, a
profile-specific estimate of say 76% probability, with a
(say 95%) “margin of error” of 10% conveys the entire sta-
tistical uncertainty concerning the Y of a new (i.e., unstud-
ied) individual with that same profile. Of course, the
interval could be narrowed, to say 74% plus or minus
5%, by using a sample size four times larger. (If the issue
is the probability that a cancer in a particular type of patient
is confined to the prostate, or that therapy will be success-
ful, or that it will rain tomorrow, it is not clear how much is
gained by the increased precision.)
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What is new?

Key findings, What this adds to what was known

e Variance formulae in multiple regression can be re-
arranged and used heuristically to plan the sizes of
studies that use linear regression models for clin-
ical prediction and for confounder adjustment.

What is the implication and what should change

now?

e These two different research genres demand
different sample size approaches, focusing on
either the value of one specific coefficient in a mul-
tiple regression, or a linear compound of the
regression coefficients and the variates formed
from a patient-specific covariate profile.

e Formulae derived from first principles are more
instructive than rules of thumb derived from
simulations.

Many of the principles in the textbook apply equally to sit-
uations where Y is “‘continuous” (e.g., the length of catheter
[3] or breathing tube [4] required, or body surface area esti-
mate for a drug dose calculation) in a patient with a specific
anthropometric or clinical profile. However, although “‘regu-
lar” (i.e., quantitative Y) regression is considered simpler to
understand than, and usually taught before, its logistic regres-
sion counterpart, there is one important aspect in which it is
more complex. The single parameter—the probability or
proportion—that governs a “Bernoulli” random variable Y
allows us to fully describe the distribution of Y. But (ever
and ever more precise estimates of) the mean of the distribu-
tion of a quantitative random variable Y tell(s) little else
about the distribution: its center and spread are usually gov-
erned by separate parameters. A profile-specific estimate of
say 40 cm, with a (say 95%) margin of error of 1 cm, for
the mean catheter length required for children of a given
height, conveys no information about where, in relation to
this 39- to 41-cm interval, the required length might be in a
future child of that same height.

2.1. Simple linear regression

Many of the sample size/precision/power issues for mul-
tiple linear regression are best understood by first consid-
ering the simple linear regression context. Thus, 1 will
begin with the linear regression of Y on a single X and limit
attention to situations where functions of this X, or other
X’s, are not necessary. As an illustration, I will use a
genuine “‘prediction” problem. (Some clinical ‘“‘pre”-
diction problems, including diagnostic ones, and the quan-
titative examples I cite and use, do not involve the future
but the present. They might be more suitably described as

“post’’-diction problems. The Y already exists, and the un-
certainty refers to what it would be if it were measured now,
rather than allowed to develop and be observed in the
future.) Although it erupts much more frequently than
others, the Old Faithful geyser in Yellowstone Park is not
nearly as regular as its name suggests: the mean of the in-
tervals (Y) between eruptions is approximately 75 minutes,
but the standard deviation is more than 15 minutes. So that
tourists to the (quite remote and not easily accessed) Park
can plan their few hours onsite, officials (and now the live
webcam [5] and special app [6]) provide them with an es-
timate of when the next eruption will occur. Rather than
providing the overall mean and SD, they use the duration
of the previous eruption (X, lasting 1—5 minutes) to consid-
erably narrow the uncertainty concerning the wait until the
next one.

Panels A—D in Fig. | show the prediction intervals
derived from nonoverlapping samples of size n = 16, 32,
64, and 128 daytime observations from November 1995.
(Subsequent earthquakes in the region have lengthened
the mean interval and altered the prediction equation.)
For illustration, we show the (estimated) prediction inter-
vals at three specific X values (X = 2, 3, and 4 minutes).
Each prediction interval reflects the statistical uncertainty
involved. Its half width is calculated as a Student-¢ multiple
of an X-specific standard error (SE). The SE, in turn, is a
multiple of the root mean squared error, or RMSE, an n-2
degrees-of-freedom estimate of the standard deviation
(o), obtained from the n squared residuals.

As shown in the Fig. 1A inset, the SE has three compo-
nents. The first is related to how precisely the point of
departure—the mean Y level at the mean X of the studied
observations—is estimated. This precision, reflected by the
narrowest part of the inner shaded region, involves just (the
RMSE estimate of) o, and n. The second, related to the
estimated mean Y level at the X value of interest, is gov-
erned by the precision of the estimated slope (this precision
is a function of the RMSE, n, and the spread of the X’s in
the sample) and how far the X value associated with the
“new” Y is from the mean of the X’s in the sample. The
X factor can be simplified to a z-value, one that governs
the bow shape of the inner region. The first and second
components involve the RMSE and n in the same way,
and so, as Fig. | shows, the width of the inner region can
be narrowed indefinitely by increasing n. However, the in-
ner region only refers to the center of the X-specific distri-
bution of Ys, not to the possible individual Y values. For
this, one must add the third variance component (cs2 itself)
reflecting the variation of a future individual.

A number of lessons can be illustrated with this simple
example. First, the research “deliverable,” and thus the sta-
tistical focus, is not a regression coefficient or an R-square
value. For every X value that might arise, it is a pair of
numbers, both measured in minutes. Assuming that the dis-
tribution has a Gaussian form (In scientific contrasts
involving means, the Central Limit Theorem helps statistics
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