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a b s t r a c t

A simple, yet efficient method for the analysis of thin plates resting on nonlinear foundations and
undergoing large deflection is presented. The method is based on collocation with the multiquadric
radial basis function. In order to address the in-plane edge conditions, two formulations, namely w–F
and u–v–w are considered for the movable and immovable edge conditions, respectively. The resulted
coupled nonlinear equations for the two cases are solved using an incremental-iterative procedure.
Three foundation models are considered, namely Winkler, nonlinear Winkler and Pasternak. The
accuracy and efficiency of the method is verified through several numerical examples.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of interaction between structural foundations and
supporting soil is of fundamental importance foundation design and
therefore, it has attracted the attention of many researchers and
engineers. The interaction is often represented by the classical
problem of plate on elastic foundation. The main difficulty in the
modeling of a plate on an elastic foundation is the determination of
the contact pressure. The problem becomes more difficult if the plate
is undergoing large deformation. The governing equations become
coupled and higly nonlinear [1]. The available analytical methods are
based on simplified assumptions and are limited to simple loading
and boundary conditions and foundation models [1–8]. For such
complicated problems, numerical methods offer convinient and reli-
able solutions. The ideal numerical method for the solution of non-
linear partial differential equations (PDEs) such as the one considered
here should be high-order accurate, flexible with respect to the
geometry, computationally efficient, and easy to implement. The
conventional numerical methods that are commonly used usually
fulfill one or two of the above criteria, but not all. Finite difference
methods (FDM), finite element methods (FEM) and boundary element
methods (BEM) have been the dominating methods for the numerical
solution of PDEs [9–13]. Referring to the most dominant approach, i.e.
FEM, it is highly flexible, but it is hard to achieve high-order accuracy
and both coding and mesh generation become increasingly difficult as

the problem dimension increases. The use of a mesh implies that
specific procedures have to be devised just to define the mesh. Also,
and to keep the order of the local approximation within reasonable
limits, the element size has to be reduced, whenever better approx-
imations are pursued. The extraordinary amount of work, which has
been put into FEM research since its early years, has, one way or
another, circumvented these and other problems associated with the
existence of a mesh and made FEM the dominant approach for most
problems in computational mechanics. Accordingly, many sophisti-
cated powerful codes (e.g. ANSYS, ABACUS, COMSOL, etc.) have been
established and have proven to be reliable in solving almost any
computational mechanics problem. FDM can be made high-order
accurate in resolving PDEs, but require a structured grid (or a
collection of structured grids), which makes it difficult to model
features of irregular domain. Furthermore, solutions of PDEs using
FDM can be derived from the assumptions of the local interpolation
schemes and require a mesh to support the localized approximations,
however, the construction of a mesh in two or more dimensions is a
non-trivial problem. In recent years, BEM has become a powerful
alternative to FEM and FDM, especially for problems involving high
gradients and stress concentrations. It has been successfully applied to
solve the problems of large deflection of thin elastic plates. However,
this was possible by devising some techniques to overcome the
inherent deficiency of BEM as a self-standing numerical method in
handling nonlinearities.

Nevertheless, the possibility of obtaining numerical solutions for
PDFs without resorting to element frame, that is meshless technique,
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has been the goal of many researchers throughout the computational
mechanics community for the past two decades or so. Radial Basis
Function (RBF)-based collocation method, as one of the most recently
developed numerical techniques, so-called mesh free or meshless
methods, has attracted attention in recent years especially in the area
of computational mechanics [14–19]. This method does not require
mesh generation which makes them advantageous for nonlinear
problems that require frequent re-meshing such as the ones con-
sidered in this study. The roots of RBF go back to the early 1970s when
it was first used for fitting scattered data [20]. In the early 1980s, it
was coupled with BEM in a technique called dual reciprocity-
boundary element method where the RBF was employed to trans-
form the domain integrals into boundary integrals [21]. Thereafter,
many researchers have used RBF in conjunction with BEM to solve
various problems in computational mechanics. The method, however,
has not been applied directly to solve partial differential equations
until 1990 by Kansa [23,24]. Since then, many researchers have
suggested several variations to the original method [25].

In this paper, a multi-quadric (MQ)-RBF-based meshless model is
developed for the solution of large deflection of thin plates resting on
nonlinear foundations. The model is capable of handling different
plate boundary conditions and foundations models. The accuracy of
the model is validated through several numerical examples.

2. Governing equations

2.1. w–F formulation

The governing equations for large deflection of plates can be
expressed in terms of the deflection w and a stress function F [1]

∇4w¼ q
D
�P
D
þ t
D
NL w; Fð Þ; ð1Þ

∇4F ¼ �E
2
NLðw;wÞ ð2Þ

where q is the distributed load, t is the plate thickness and
D¼ ðEt3Þ=ð12ð1�υ2ÞÞ is the flexural rigidity of the plate having
elastic constants E and υ , P is the foundation interaction force to
be defined in Section 2.3, NL(w,F) is a nonlinear differential
operator given by
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and
NL(w,w) is obtained by replacing F by w in the foregoing

equation. The stress function F is related to the memberane forces
Nx, Ny, and Nxy by the following differential operators:
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The bending moments Mx, My, and Mxy are related to w by the
following differential operators respectively:

Mx ¼ �D
∂2w
∂x2

þυ
∂2w
∂y2

� �
; My ¼ �D

∂2w
∂y2

þυ
∂2w
∂x2

� �
;

Mxy ¼D 1�υð Þ ∂2w
∂x∂y

� �
ð5Þ

The equivalent transverse shear forces Vx, Vy, are given by
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The resultant bending moment and equivalent shear force on
the boundary are given by
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where nx and ny are the x and y components of the unit vector
normal to the boundary.

The general boundary conditions for large deflection of plates
can be classified into following two types:

1) Transverse boundary conditions which are encountered in both
small and large deflection formulations. For this type, we will
consider that at each boundary point there are two prescribed
boundary conditions

ðaÞ BCw1 wð Þ ¼ 0 where BCw1 wð Þ ¼w or BCw1 wð Þ ¼ Vn ð9Þ

ðbÞ BCw2 wð Þ ¼ 0 where BCw2 wð Þ ¼ ∂w
∂n

or BCw2 wð Þ ¼Mn ð10Þ

2) In-plane boundary conditions which have to be addressed in
the case of large deflection formulation. For a movable edge,
the inplane boundary conditions are given by

BCF1 Fð Þ ¼ BCF2 Fð Þ ¼ 0 where BCF1 Fð Þ ¼ F and BCF2 Fð Þ ¼ ∂F
∂n

ð11Þ

The w–F formulation given above was based on the formulation
presented in [29] and the condition for the movable edge case was
F¼dF/dn¼0, according to [29]. The stress function was not used to
analyze problems with an immovable edge. The governing equa-
tions written in terms of the three displacements components u, v
and w are used to analyze problems with immovable edges, as
discussed in the following sections.

2.2. u–v–w Formulation

The details of the derivation can be found in the appendix. For
briefety, we present only the final equations including the founda-
tion interaction forces

L11 uð ÞþL12 vð Þ ¼NL1 wð Þ; ð12Þ

L21 uð ÞþL22 vð Þ ¼NL2 wð Þ ð13Þ

∇4w¼ q
D
�p
D
þNL3 u; v;wð Þ ð14Þ

where
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2ð1�υ2Þ ; L12 ¼ L21 ¼
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NL1 wð Þ ¼ �ð1þυÞwxywyþwxð2wxxþ 1�υð ÞwyyÞ
2ð1�υ2Þ ð16Þ

NL2 wð Þ ¼ �ð1þυÞwxywxþwyð2wyyþ 1�υð ÞwxxÞ
2ð1�υ2Þ ð17Þ
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