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a b s t r a c t

Amulti-scale modelling for analysing the stretching problem of plates composed of heterogeneous materials is
presented. The BEM (Boundary Element Method) is adopted to model the macro-continuum (represented by
the plate) while the equilibrium problem at micro-scale (represented by the Representative Volume Element –
RVE) is solved by a FEM (Finite Element Method) formulation that takes into account the Hill–Mandel Principle
of Macro-Homogeneity. After solving the equilibrium problem of the RVE, the micro-to-macro transition is
made by applying the volume averaging hypothesis of strain and stress tensors. Some numerical examples are
then analysed to show that the proposed formulation is a suitable tool for the analysis of stretched of plates
composed of heterogeneous materials. To define the microstructure, different RVEs composed of an elasto-
plastic matrix with inclusions or voids are considered. Besides, a quadratic rate of asymptotic convergence of
the Newton–Raphson scheme has been achieved during the iterative procedure.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Despite of the materials used in Engineering (metals, polymers,
composites, concretes and woods) have different microstructures,
at the macroscopic level similar characteristics of mechanical
behaviour are observed, as example: elasticity, viscosity, plastic
strain, brittle rupture, ductile rupture, etc. Because of these
similarities, constitutive models based on continuum mechanics
and thermodynamics of solids applied to macroscopic analyses are
usually proposed. However, it is important to note that the
deformation and rupture processes take place at micro-scale level.
Accordingly, many works have been developed in order to analyse
the dissipative phenomena in the micro-scale of materials using
many techniques and constitutive models [1–5]. In this context,
modelling heterogeneous material in different scales is very
important to better represent the behaviour of such complex
materials [6–10]. In many situations the traditional phenomeno-
logical approach for constitutive description does not provide a
sufficiently general predictive modelling capability [11–13].

The infinitesimal material neighbourhood of a point at the macro-
continuum is represented by the RVE (representative volume ele-
ment) where the material behaviour is monitored individually
(see [14–17]). Therefore the micro-structure is represented by the
RVE, whose equilibrium problem is solved after imposing to the RVE
the macro strain related to the point at the macro-continuum. After
solving the equilibrium problem at micro-scale, the micro-to-macro

transition can be made by applying a homogenisation process. Thus
the micro-scale passes information to the macro-scale and vice versa.
Note that the integrity of a local point of the macro-continuum is
reduced if dissipative processes take place in the microstructure.
Then, a non-linear formulation is also required to model the macro-
continuum. In this context, the most of the works uses the Finite
Element Method (FEM) to model the mechanical behaviour of all
scales involved in the problem [18–27], although some few formula-
tions using Boundary Element Method (BEM) have been proposed to
model the mechanical behaviour into the context of multi or
microscale [28–31].

On the other hand, the BEM is a suitable tool to deal with plate
problems (see [32–36]), being specially indicated to compute displace-
ments and forces due to stress or strain concentration problems. This
can occur when the plate is subjected to loads distributed over small
regions or due to a fracture process leading to strain localisation, for
example. In future works the authors intend to perform multi-scale
analysis of plates composed of brittle materials where the fracture
process can be very important. Thus, with this work, we intend to
present the BEM as a new alternative method to deal with multi-scale
analysis of structures composed of heterogeneous materials.

In the present work, the non-linear BEM formulation for analysing
the stretching problem of plates presented in [37] is used to model the
macro-continuum. The BEM integral representation for in-plane dis-
placements is obtained from Betti's theoremwhere the initial force field
over the domain is approximated by using the well-known cell sub-
division (see [37–39]). The equilibrium problem to be solved at micro-
scale is defined by the FEM formulation developed in [14], where the
problem consists of finding the field of displacement fluctuation that,
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for each instant t, the RVE equilibrium equation is satisfied. This disp-
lacement fluctuation represents how the microscopic strain varies over
the RVE, i.e., in the case of having uniform microscopic strain, the
displacement fluctuation is null and the macroscopic strain coincides to
the microscopic strain. To solve the RVE equilibrium problem, different
boundary conditions can be adopted for the RVE, leading to different
multi-scale models and therefore to different numerical responses. In
the present work the following boundary conditions can be considered
in the RVE: (i) linear displacements, (ii) periodic displacement fluctua-
tions and (iii) uniform boundary tractions. Besides, an algorithm is pre-
sented to solve the proposed multi-scale modelling. Finally, two
numerical examples are presented. In the first one, a plate subjected
to uniform normal stress is considered, where a RVE composed of sev-
eral inclusions (or voids) is adopted. We have performed different
analysis where the inclusions have been considered elastic or elasto-
plastic and whose material properties have been changed in order to
verify how the inclusions can affect the plate mechanical response.
Then, considering the RVE with several voids, different boundary con-
ditions are imposed to the RVE. The second example consists of a
perforated plate subjected to normal stress where an elastic inclusion is
defined at the RVE central region. In this case, we have considered
different volume fractions for the inclusion in order to observe how the
inclusion can affect the plate mechanical behaviour. This kind of RVE
can represent materials as the MMCs (metal matrix composites) where
inclusions are added to the material in order to improve its elastic
properties, such as: high stiffness, high tensile strength, creep resistance,
wear resistance, low density and damping capabilities.

Note that in [40] the authors present a multi-scale model to
analyse the simple bending problem, i.e., a BEM formulation for plate
bending analysis has been adopted for themacro-continuum. The FEM
formulation used in [40] to model the RVE is the same considered in
the present work, although the number of RVEs required to solve the
problem is much bigger if compared to the present work. This is due
to the fact that in [40] the nodal values for bending moments are
obtained numerically by integrating the stress along the plate thick-
ness (using a Gauss scheme). Therefore, one RVE has to be assigned to
each Gauss point defined along the plate thickness and related to a
particular plate node. In the present work, only one RVE has to be
defined for each cell node, as the stresses are constant along the plate
thickness. Thus, the BEM formulation adopted in the present work to
model the macro-continuum is completely different to the one cons-
idered in [40], as now we deal with the plate stretching problem. In
the present work, we intend to show that the FEM formulation
considered in [40] to model the micro-scale, can be coupled to others
BEMmacro-continuum formulations, you have only to assign one RVE
to each point where the stresses evaluation is required and to change
the macro-continuum formulation according to the problem to be
analysed. After solving the RVE equilibrium problem, the stress vector
and constitutive tensor can be computed for a particular point and
the analysis continues according to the macro-continuum formulation.
Besides, in [40] we have shown the BEM as a good alternative to
perform multi-scale analysis for the plate problem. In the present
work, we intend to show that the BEM is also a good alternative to
perform the multi-scale analysis of the plate stretching problem, as
almost all the works already published about multi-scale modelling
consider only the FEM to model all the scales. In a future work, the
authors intend to propose a multi-scale model where only the BEM
will be considered to model both the macro and micro scales.

2. BEM formulation for modelling the macro-continuum

2.1. The non-linear two-dimensional problem

The non-linear plate stretching analysis, that represents the macro-
continuum problem in the present work, is modelled by a BEM non-

linear formulation discussed in details in [37]. To define the plate
stretching problem, let us consider a flat plate of thickness t, external
boundary Γ and domain Ω referred to a Cartesian system of
co-ordinates with x1 and x2 axes laying on its middle surface and x3
being the axis perpendicular to that plane. It is assumed that the plate
supports only loads acting in the x1 and x2 directions over the plate
middle surface. The variables related to the plate stretching problem
are: the in-plane tractions (_pn and _ps), in-plane displacements (_un and
_us), being n and s the local co-ordinate system, with n and s referring
to the boundary normal and tangential directions, respectively. As the
present work deals with non-linear analysis, all variables are expr-
essed in rates, i.e., ð_xÞ ¼ dx=dt, their time derivatives. The basic equil-
ibrium equations for the plate stretching problem will be omitted
here, but they can be found in several works [32–37].

The membrane internal forces are obtained by integrating the
Cauchy stresses _σij across the plate thickness which for the two-
dimensional problem, considering plane stress results into:

_Nij ¼
Z t=2

� t=2
_σijdz¼ t _σij i; j¼ 1;2 ð1Þ

Note that in a conventional non-linear analysis, _σij is obtained after
verifying the constitutive model for a particular point of the plate. In
the multi-scale analysis the dissipative processes occur in the RVE that
represents the microstructure, as discussed in Section (3). Thus in a
multi-scale analysis _σij is obtained after solving the RVE equilibrium
problem and the membrane internal force _Nij rates evaluated by
replacing _σij into Eq. (1).

As this work only deals with small strain problems the total
strain will be split into its elastic and inelastic parts, _εeij and _εpij
respectively, as follows:

_εij ¼ _εeijþ _εpij i; j¼ 1;2 ð2Þ

By applying the Hooke's law the stress tensor rate _σij (as well as
the force _Nij) is related to the elastic part _εeij of the strain tensor
rate and the membrane force predictor _N

e
ij (often defined as elastic

trial used in non-linear algorithms) related to the total strain _εij.
Thus, the forces _N

e
ij can be written in terms of the total displace-

ments derivatives as follows:

_N
e
ij ¼ μ _ui;jþ _uj;i

� �þ 2μν'
1�2ν'

_uk;kδij i; j; k¼ 1;2 ð3Þ

where δij is the Kronecker delta, μ is the shear elastic modulus,
ν'¼ ν= 1þνð Þ, being ν the Poisson's ratio; if the plane stress is
considered (case of the present paper), μ has to be weighted by the
plate thickness t.

Therefore, the inelastic membrane force rate _N
p
ij is defined as:

_N
p
ij ¼ _N

e
ij� _Nij ð4Þ

Observe that although an elasto-plastic criterion has been adopted
in the present work for describing the dissipative process in the RVE,
the presented BEM formulation used to model the macro-continuum
can be also used with other kind of criteria.

2.2. BEM integral representations and algebraic equations

The non-linear formulation is obtained from Betti's reciprocal
theorem (see more details in [37]) which in the case of the plate
stretching problem can be written as:Z
Ω
εnijk

_NjkdΩ¼
Z
Ω
Nn

ijk _εjkdΩ�
Z
Ω
εnijk

_N
ðpÞ
jk dΩ i; j; k¼ 1;2 ð5Þ

where the values with superscript n are related to the fundamental
problem, being i the direction of the fundamental load.

By integrating Eq. (5) by parts twice one obtains the well known
representation of in-plane displacements written for internal and
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