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a b s t r a c t

A finite element and indirect boundary element coupling method is presented for the time-harmonic
response of a laterally loaded floating pile embedded in a transversely isotropic multilayered half-space.
The floating pile is modeled as a Bernoulli-Euler beam using the finite element method (FEM), while the
soil is modeled by using an indirect boundary element method (BEM) based on the fundamental solution
for a transversely isotropic multilayered half-space. Then the governing equation of the interaction
between the pile and transversely isotropic multilayered half-space is deduced by coupling FEM and
BEM. Numerical examples are performed to validate the presented theory and to investigate the impact
degree of anisotropy and layering arrangement on the dynamic response of a pile.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Piles embedded in continuous media subjected to lateral har-
monic loads have widespread application value in several branches of
engineering. The piles are usually modeled as beams and solved by
numerous methods, while the fundamental solution of soil is obtained
by solving the governing differential equations of elastic medium.
Then the pile-soil interaction problem is solved based on the con-
tinuity conditions between piles and soil. The above interaction
problem was first presented by Tajimi [1] in 1969, who investigated
the dynamic response of a single pile embedded in an elastic stratum.
Since then, many researchers [2–16] have made extensive studies on
the dynamic interaction between a pile or pile group and elastic
isotropic media. Among these references, Pak and Jennings [8] pre-
sented a rigorous solution for the dynamic response of a single pile in
an elastic half-space under transverse excitations, where the interac-
tion problem was formulated as a Fredholm integral equation of the
second kind. Kaynia and Kausel [10] used the Green's functions for
layered media to analyze the dynamic stiffnesses of piles and pile
groups in a layered half-space, and their works were usually con-
sidered to be the standard solutions for the dynamic response of piles
and pile groups in viscoelastic media. On the other hand, some
numerical techniques such as FEM [12], BEM [13,14] and FEM–BEM
coupling [15,16] were applied to tackle this problem. Kuhlemeyer [12]

used the finite element method to cope with the interaction problem
of static and dynamic laterally loaded piles embedded in elastic media.
With the aid of the fundamental solution for a periodic point force in a
half-space, Sen et al. [13] put forward a boundary element method for
the three-dimensional steady-state analysis of piles and pile groups in
homogeneous soils. Mamoon et al. [14] introduced two boundary
element methods to evaluate the impedance and compliance func-
tions of piles and inclined pile groups embedded in a homogeneous
soil medium. Based on a BEM-FEM coupling model, Padrón et al. [15]
and Millán and Domínguez [16] obtained the solutions for vertical or
horizontal time-harmonic response of piles and pile groups in visco-
elastic or poroelastic soils.

As can be seen from the above references, the soil is usually treated
as isotropic or layered isotropic media and the property of the
anisotropy is neglected. Published papers with the consideration of
pile–soil interaction in the transversely isotropic medium can be
seldom found in the literature. The pioneering work was presented
by Liu and Novak [17], who used the finite element method in the
piles combined with dynamic stiffness matrix of soils to investigate
the dynamic impedance of piles in transversely isotropic layered
media. However, the subsequent studies mainly concentrated on the
interaction among rigid piles [18,19]. Recently, Gharahi et al. [20]
extended the solution of Pak and Jennings [8] to a transversely
isotropic elastic half-space. As we know, natural soils are usually laye-
red due to the long-term sedimentation process, and have different
properties in the horizontal direction from those of the vertical
direction [21–23]. Furthermore, the behavior of lateral vibration of
piles is closely related to the soil properties, especially the horizontal
direction properties. Therefore, it is absolutely essential to study the
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dynamic behavior of laterally loaded piles embedded in transversely
isotropic multilayered media. However, the solutions for this topic
have been rarely reported so far.

In this paper, the dynamic response analysis of a floating pile emb-
edded in a transversely isotropic multilayered half-space subjected to
horizontal harmonic excitations is performed by using a finite element
and indirect boundary element coupling method. According to the
Bernoulli–Euler beam theory, the floating pile is treated as a one-
dimensional structure and discretized by applying a three-node
element of FEM, whereas the multilayered half-space is treated as a
three-dimensional elastic continuummodeled bymeans of an indirect
BEM, whose kennel function is based on the dynamic solution for a
transversely isotropic multilayered half-space [24]. Then, the pile–soil
interaction problem is solved in virtue of the coupling between FEM
and BEM. Finally, numerical examples are performed to compare with
the existing exact solution for an isotropic half-space to confirm the
accuracy of the proposed method and to study the influence of the
characters of transversely isotropy and layering arrangement on the
dynamic response of a pile.

2. FE equations for the pile

The general equation of motion for the pile in the absence of
internal damping is as follow [25]

M €upðtÞþKupðtÞ ¼ FðtÞ ð1Þ
where M is the mass matrix of the pile; K is the stiffness matrix of
the pile; upðtÞ is the vector of nodal displacements and rotations,
and €upðtÞ is the second derivation with respect to t of upðtÞ; FðtÞ is
the vector of nodal forces.

In this paper, the piles are subjected to time-harmonic load
with circular frequency ω, thus the vectors of nodal displacements
together with nodal forces are expressed in the following forms

upðtÞ ¼ upeiωt ð2aÞ

FðtÞ ¼ Feiωt ð2bÞ
where up and F are the amplitudes of upðtÞ and FðtÞ, respectively.

With the elimination of the harmonic time factor eiωt , sub-
stituting Eqs. (2a) and (2b) into Eq. (1) yields

K�Mω2� �
up ¼ F ð3Þ

The pile is modeled as a one-dimensional bar and discretized
by a three-node beam element with 5 node parameters, of which
three are lateral displacements ðuk;ul;umÞ and two are rotations
ðθk;θmÞ (see Fig. 1). The lateral displacement along the element is
approximated by a set of fourth degree shape functions as [15]

u¼φ1ukþφ2θkþφ3ulþφ4umþφ5θm ð4Þ
where

φ1 ¼ �3
4 ζþζ2þ1

4 ζ
3�1

2 ζ
4 ð5aÞ

φ2 ¼ �1
8 ζLþ1

8 ζ
2Lþ1

8 ζ
3L�1

8 ζ
4L ð5bÞ

φ3 ¼ 1�2ζ2þζ4 ð5cÞ

φ4 ¼ 3
4 ζþζ2�1

4 ζ
3�1

2 ζ
4 ð5dÞ

φ5 ¼ �1
8 ζL�1

8 ζ
2Lþ1

8 ζ
3Lþ1

8 ζ
4L ð5eÞ

in which L is the element length; ζ is the elemental dimensionless
coordinate and ζ ¼ 2x2�Lð Þ=L; ð�1rζr1Þ.

With the aid of the principle of virtual displacements and the
shape functions above, the consistent mass matrix and the stiff-
ness matrix for an element can be obtained as [25]

Me ¼ ρpAL
1260

260 20L 80 −46 7L
20L 2L2 8L −7L L2

80 8L 512 80 −8L
−46 −7L 80 260 −20L
7L L2 −8L −20L 2L2

2
6666664

3
7777775

ð6aÞ

Ke ¼ EpIp
5L3

316 94L −512 196 −34L
94L 36L2 −128L 34L −6L2

−512 −128L 1024 −512 128L
196 34L −512 316 −94L
−34L −6L2 128L −94L 36L2

2
6666664

3
7777775

ð6bÞ

where ρp is the density of the pile; A is the cross-sectional area of
the pile; Ep is Young's modulus of the pile; Ip is the inertia moment
of the section of the pile.

The nodal forces of the pile can be decomposed into two parts,
which are the lateral force and bending moment applied at the
pile head as well as the distributed forces along the pile-soil
interface, i.e.

F¼ FT þTqp ð7Þ
where FT is the lateral force and bending moment vector applied
at the pile head; qp is the nodal tractions vector along the pile-soil
interface for the pile; T is global transform matrix of equivalent
nodal forces of the pile.

As is illustrated in Fig. 2, the external forces defined over the
element are schematized and the tractions along the pile-soil interface
are approximated by a set of second degree shape functions as [15]

qp ¼ϕ1qkþϕ2qlþϕ3qm ð8Þ
where

ϕ1 ¼ 1
2 ζ ζ�1

� � ð9aÞ

ϕ2 ¼ 1�ζ2 ð9bÞ

ϕ3 ¼ 1
2 ζ ζþ1

� � ð9cÞ
Similarly, by using the principle of virtual displacements and

the shape functions of Eqs. (5a)–(5e) and Eqs. (9a)–(9c), the
transform matrix of equivalent nodal forces for an element can
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Fig. 1. Finite element definition for the pile. Fig. 2. Nodal forces and tractions along the pile–soil interface of an element.
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