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a b s t r a c t

In this study, the dual boundary element method (DBEM) is coupled with the dual reciprocity method (DRM)
to investigate wave scattering by a concentric porous cylinder system, which consists of a circular inner
cylinder and semicircular porous outer cylinder mounted on a conical shoal. The complex porous-effect
parameter proposed by Yu and Chwang [2] is used to describe the permeability of the porous outer cylinder.
The effect of topography has been considered by applying the extended mild-slope equation (EMSE) which
was proposed by Chandrasekera and Cheung [10] to the entire fluid domain. The wave force, wave
amplification, and increased performance configuration are illustrated through examples.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, porous structures have become popular in
coastal and offshore engineering because they reduce the wave
forces and wave run-up on structures. The porous-effect para-
meter, known as the Chwang parameter, has been used to describe
the permeability of porous thin structures [1]. Yu and Chwang [2]
have proposed another derivation that is based on the findings of
Sollitt and Cross [3] and used to extend the parameter from a real
form to a complex form.

A theoretical investigation of regular wave interactions with a
concentric porous cylinder system that consists of a circular porous
outer cylinder and impermeable inner cylinder was proposed by
Wang and Ren [4]. Their results showed that the presence of the
outer cylinder reduced the hydrodynamic force acting on the inner
cylinder and wave amplitude around the windward side of the inner
cylinder. Since then, many numerical and experimental studies of
wave interactions with concentric porous cylinder systems have been
published [5–7]. In concentric cylinder systems, the circular outer
cylinder was the primary focus of these studies until Liu and Lin
proposed two related studies [8,9] that included a single-layer arc-
shaped outer cylinder and a double-layer arc-shaped outer cylinder.
However, the aforementioned studies primarily included water of

uniform depth. Therefore, the effect of topography will be considered
in the transformation of waves in the present study.

The extended mild-slope equation (EMSE) proposed by Chandra-
sekera and Cheung [10] improves upon the results of Berkhoff's [11]
mild-slope equation (MSE) for relatively steep and rapidly undulating
bathymetry. In addition, the EMSE has been successfully employed in
many cases with steep topography [12,13]. However, the EMSE can be
rearranged into an inhomogeneous Helmholtz equation (see Eq. (15))
to produce the domain integration in the conventional boundary
element method (BEM) procedure.

Recently, a cylindrical island mounted on a permeable circular
shoal was researched by using the linear long wave equation (LWE) in
Kuo et al. [14]. The first exact analytic solution to the modified mild-
slope equation (MMSE) for wave scattering by Homma island was
proposed by Liu and Xie [15].

The application of the conventional BEMwith the dual reciprocity
method (DRM) (DRBEM) was first proposed by Nardini and Brebbia
[16] in free vibration analyses for the Laplace operator to circumvent
the difficulties associated with domain integration. Later, due to
conquering of using Helmholtz operator in the DRBEM, Zhu [17]
initiated an application of the DRBEM for wave refraction and
diffraction based on the MSE. The combined effects of wave refrac-
tion–diffraction and currents were studied by the DRBEM in Hsiao
et al. [18]. Recently, Hsiao et al. [12] developed the DRBEM wave
model, which is governed by the EMSE. Unlike the finite difference
method (FDM) and the finite element method (FEM), the conven-
tional BEM distinguishes itself as a boundary method. Since the
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interior mesh does not have to be dealt with, the mesh preparation
of the conventional BEM is more cost efficient. For the advantage of
the conventional BEM, the DRBEM is applied to transform domain
integrals into the corresponding boundary integrals for the EMSE in
this study.

The porous outer cylinder in the concentric porous cylinder system
is often viewed as a thin structure (degenerate boundary) that results
in an ill-posed problem for the conventional BEM and DRBEM
procedures; however, the dual boundary element method (DBEM),
which was first proposed by Hong and Chen [19] for a cracked
elasticity problem, is a potential solution to this problem. The DBEM
has been applied to analyze the interaction between water waves and
a submerged horizontal thin plate by Tsaur and Her [20]. In the case
with degenerate boundaries, the DRBEM cannot provide sufficient
conditions. By introducing the hypersingular boundary integral equa-
tion, the DBEM overcomes this problem without subdomains and
thereby requires less computer memory. Detailed review can be found
in Chen and Hong [21]. Therefore, the problem in this study is
addressed by combining the DBEM and DRM and using the advan-
tages of both.

However, when the inverse associated with the approximating
functions inevitably is computed, it fails because coincident nodes on
the degenerate boundary emerge in the process of combining the
DBEM and DRM. Fedelinski et al. [22] proposed a modified matrix
associated with the approximating functions to remedy this situation,
and they applied the DBEM and DRM in dynamic fracture mechanics.
Additionally, Albuquerque et al. [23] proposed an easy adaptation that
eliminates the consideration of nodes on the degenerate boundary in
the computation of the matrixes associated with the approximating
functions and particular solutions.

Following the suggestion proposed by Albuquerque et al. [23],
the DBEM and DRM are applied in this study to examine the
effectiveness of a semicircular porous outer cylinder in the con-
centric cylindrical system mounted on a conical shoal. The wave
forces and wave amplifications are discussed in terms of various
conditions.

Section 2 describes the governing equations, boundary conditions,
and numerical implementation. Section 3 presents examples used to
verify the model. In Section 4, an examination of the wave forces and
wave amplifications is presented. Section 5 presents the conclusions
from the study.

2. Formulation

This work applies the DBEM coupled with the DRM technique to
investigate the scattering of simple harmonic waves by a concentric
cylindrical systemmounted on a conical shoal. Fig. 1 shows a sketch
of the configuration. The concentric cylindrical system consists of a
circular inner cylinder with radius ra and semicircular porous outer
cylinder on the left with radius rc . The side wall of the outer
cylinder is porous and thin. The center axis of the conical shoal that
is surrounded by an infinite fluid region of constant depth h0 is the
same as the center axis of the inner cylinder, where ha and rb are
the water depth of the perimeter of the inner cylinder and radius of
the toe of the bottom shoal, respectively. The Cartesian coordinate
system defines the three-dimensional problem, where the origin is
located at the center axis of the inner cylinder at the still-water
level, x and y are measured horizontally and z is measured vertically
upwards from the still-water level.

For an inviscid, incompressible fluid and non-rotational motion,
a flow velocity potentialΦ exists and satisfies the Laplace equation
in the fluid region. Furthermore, a monochromatic incident wave
with amplitude ζ0 and angular frequency σ (σ ¼ 2π=T , where T is
the wave period) is specified, and it propagates at an angle θI to
the positive x-axis. The velocity potential of the linearized wave

motion is as follows:

Φ x; y; z; tð Þ ¼ gζ0
σ
ϕ x; yð Þcosh k zþhð Þ

cosh kh
Uexp � iσtð Þ ð1Þ

where t is time, g is the gravitational constant, ϕ is the complex
horizontal spatial velocity potential, i¼

ffiffiffiffiffiffiffiffi
�1

p
, h represents the

water depth and k is the wave number that satisfies the dispersion
relation (σ2 ¼ gk tanh kh).

According to the derivation by Chandrasekera and Cheung [10],
ϕ satisfies the EMSE as follows:

CCg∇2ϕþ∇CCg U∇ϕþ σ2Cg

C
þgf 1∇

2hþgkf 2 ∇hð Þ2
� �

ϕ¼ 0 ð2Þ

where C ¼ σ=k and Cg ¼ dσ=dk are the phase and group velocities,
respectively, ∇¼ ∂=∂x; ∂=∂y

� �
, ∇2h is the bottom curvature, ∇hð Þ is the

bottom slope, and f 1 and f 2 are dimensionless coefficients as follows:

f 1 ¼
�4kh cosh khð Þþ sinh 3khð Þþ sinh khð Þþ8 khð Þ2 sinh khð Þ

8cosh3 khð Þ 2khþ sinh 2khð Þ� � �kh tanh khð Þ
2cosh2 khð Þ

ð3Þ

f 2 ¼
sech2 khð Þ

6 2khþ sinh 2khð Þ� �3 U 8 khð Þ4þ16 khð Þ3 sinh 2khð Þ
n

�9sinh2 2khð Þcosh 2khð Þþ12 khð Þ 1þ2sinh4 khð Þ
h i

khþ sinh 2khð Þ� �o
ð4Þ

Based on linear wave theory, the free surface elevation η is as
follows:

η x; y; tð Þ ¼ Re iζ0ϕ x; yð ÞUexp � iσtð Þ� � ð5Þ

The entire fluid domain (see Fig. 1) is divided into two regions
by the pseudo boundary Γb, where the exterior infinite region D0

is a constant-depth region between Γ1 (at infinity) and Γb, and
the interior region D1 is a variable-depth region between Γb and
Γa. To specify the location of the velocity potential ϕ, we define ϕ0
and ϕ1 to denote ϕ in the D0 and D1 regions, respectively.

Because k¼ k0 and h¼ h0, C and Cg are constant in the exterior
region D0, the EMSE, Eq. (2), is reduced to the Helmholtz equation

Fig. 1. Definition sketch.
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